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Preface

This research brief contains the progress reports of the Research Staff of the

Center for Modeling of Turbulence and Transition (CMOTT) from May 1991 to May

1992. It is intended as an annual report to the Institute for Computational Mechanics

in Propulsion and NASA Lewis Research Center. A separate report entitled, "Work-

shop on Engineering Turbulence Modeling," covering some of the 1991 CMOTT

Summer research activities was released earlier this year.

The main objective of the CMOTT is to develop, validate and implement the

turbulence and transition models for practical engineering flows. The flows of interest

are three-dimensional, incompressible and compressible flows with chemical reaction.

During this period, the research covers two-equation (e.g., s-e) and algebraic Reynolds-

stress models, second moment closure models, probability density function (pdf)

models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and

Direct Numerical Simulation (DNS). Last year was CMOTT's second year in

operation. CMOTT now has eleven members from ICOMP, NASA LeRC, and

Sverdrup Technology Inc., working on various aspects of turbulence and transition

modeling in collaboration with NASA-Lewis scientists and Case Western Reserve

University faculty members. The CMOTT members have been continuously and

actively involved in the international and national turbulence research activities. A

biweekly CMOTT seminar series has been conducted with speakers invited from within

and without of the NASA Lewis Research Center, including foreign speakers. The

current CMOTT roster and its organization are listed in Appendix A. Listed in

Appendix B are the abstracts and the scientific and technical issues discussed in

biweekly CMOTT seminars. Appendix C gives a list of references which are the papers

contributed by CMOTT members in the last two years.

Tsan-Hsing-Shih

vii
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Lumley's Energy Cascade Dissipation Rate
Model for Boundary-Free Turbulent Shear Flows

B. S. Duncan

1. Motivation and Objective

True dissipation occurs mainly at the highest wavenumbers where the eddy sizes

are comparatively small. These high wave numbers receive their energy through

the spectral cascade of energy starting with the largest eddies spilling energy into

the smaller eddies, passing through each wavenumber until it is dissipated at the

microscopic scale. However, a small percentage of the energy does not spill contin-

uously through the cascade but is instantly passed to the higher wave numbers 1.

Consequently, the smallest eddies receive a certain amount of energy almost imme-

diately. As the spectral energy cascade continues, the highest wave number needs

a certain time to receive all the energy which has been transferred from the largest

eddies. As such, there is a time delay, of the order r, between the generation of

eiiergy by the largest eddies and the eventual dissipation of this energy.

For equilibrium turbulence at high Reynolds numbers, there is a wide range where

energy is neither produced by the large eddies nor dissipated by viscosity, but is

conserved and passed from wavenumber to higher wavenumber. The rate at which

energy cascades from one wavenumber to another is proportional to the energy

contained within that wave number. This rate is constant and has been used in

the past as a dissipation rate of turbulent kinetic energy. However, this is true

only in steady, equilibrium turbulence. Most dissipation models contend that the

production of dissipation is proportional the production of energy and that the

destruction of dissipation is proportional to the destruction of energy. In essence,

these models state that the change in the dissipation rate is proportional to the

change in the kinetic energy. This assumption is obviously incorrect for the case

where there is no production of turbulent energy, yet energy continues to cascade

from large to small eddies. If the time lag between the onset on the energy cascade

to the destruction of energy at the microscale can be modeled, then there will be a

better representation of the dissipation process. Development of an energy cascade

time scale equation will be discussed in Section 2.2.

2. Work Accomplished

2.1 Mean Flow Equations

For incompressible flow, the equations for continuity of mass and axial momentum
are written as

0Ui
----'--0
0Xl

and

DU_ 0 [" OUi ) 10P

.
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where, uiuj is the turbulent Reynolds stress tensor. Using the' eddy viscosity

concept 2, the Reynolds stress may be related to the mean strain rate and a turbulent

eddy viscosity,

-uiuj - u, \-_xj + Ozj ] - -_k6ij. (1)

The turbulent viscosity given in the above equation can be interpreted as a measure

of the turbulent kinetic energy existing in the flow times a local length scale,

vt = ck½1

where c is an arbitrary constant. The definition used for this length scale is the pri-

mary discriminating factor between turbulence models and determines the number

of equations which need to be solved. The length scale can be written in terms of

the turbulent kinetic energy, k, and its dissipation rate,e,

k_
I _- m

£

Now, the momentum equation can be written as

DUi O ( , OUi'_ 10P= (v+ , ) pox,

where,

c_,k 2•" _, = _ (2)
e

and c_, is a constant. The k and e are determined by solving transport equations

for the turbulent kinetic energy and the dissipation. These equations and the mod-

ification to the "standard" dissipation equation will be discussed in Section 2.2.

2.2 Turbulence Equations

Taking the Navier-Stokes equations and multiplying by _i = Ui + ui and then

taking the time average yields an equation that contains both the energy equation

for the mean velocity, Ui, and a mean energy equation for the fluctuating component

of velocity, ui. Eliminating the energy equation for the mean velocity yields the

turbulent energy budget in the absence of a pressure gradient field 3,

The last term in equation (3) is the rate at which viscous forces perform deformation

work to the fluctuating strain rate, defined as

1 (Ouj Ou_
s_j = 5 \ Ozi + Ox_) "
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This term is the true viscous dissipation rate which drains l_inetic energy from the

system, e = 2vsijs_j. This dissipation rate is important to the overall turbulence

structure. The next to the last term in equation (3) serves to transport kinetic

energy between the mean flow and the turbulence. It is generally referred to as the

kinetic energy production term. Writing the mean strain, S_j, as

the production term for incompressible flow is defined as

{ovj ov, or,
P_ = -uiu-]Sij = vt \-O-xi_xi+ Oxj ] Oxj

(4)

The last set of terms to be modeled represents the energy redistribution by viscous

forces and are contained within the parenthesis on the right hand side of equation

(3). From the definition of the fluctuating strain rate,

and using a mean gradient hypothesis, the triple correlation can be rewritten as

vt Ok

o'k Oxj

where ak is a constant of the order one. Combining all these modeling assumptions

yields the high Reynolds number form of the turbulent kinetic equation,

An equation of the following form has been widely used for modeling of the

dissipation,

b-/= ox---j + + -

The production term, P, has been assumed to be proportional to the turbulent

kinetic energy production term, equation (4). This approximation places a di-

rect correlation between the production of turbulent energy and the production of

dissipation. Although this may be true at equilibrium, where by definition the dis-

sipation equals the turbulent energy production, there are some deficiencies in this

statement for the more general case. According to Lumley x, the modeled dissipation

rate equation should be written as,

D--'-t= Ox'--_ v + -- + --aS . (5)a e _Xj C D CD k

3
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The production term, P_, now represents the rate at which energy arrives at the dis-

sipative wavenumbers through the energy cascade starting with low wavenumbers.

In equation (5), 1/8 represents the characteristic time for energy to be transported
to the dissipative wave numbers.

In the following equation, the term on the left hand side and the first term on the

right represent the transport of the inverse time scale by advection and diffusion,

respectively. The remaining terms are the production from the mean straining

forces within the large scale mean flow structures and the dissipative losses at the

microscale,

DS

Dt
0 vt (V/_jSO _ S) 1

The production and loss terms have been scaled by a characteristic time, T, which

in this study has been taken to be a weighted function of the time scale for the large

eddies, r, 7-
T"-_

2CB"

Since most energy enters the cascade at scales comparable to the integral scale, l,

the characteristic time scale of the large eddies dictates the rate of energy transfer

and is defined as r = _ for nearly isotropic turbulence. Using the approximation
_3

for the integral length scale as, l = T, the time scale becomes

r=2 k_

which is valid even in nonequilibrium flows. Letting Cs be a function of mean and

turbulent quantities, the inverse time scale equation can be written as

D--7= 0x--S v+ + -- - SCB -k

where

cB = 1+ 9kv°' °'J
C

Determination of the modeling constants is discussed in the next section.

2.8 Model Constants

In this paper, only high Reynolds number turbulence has been considered. The

model constants are examined for the grid turbulence case where the mean velocity

gradients and strain rates vanish. For this case, turbulent intensity decays with the

following proportionality,

o¢ ,where, t = Uoo

4
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so that the dissipation rate must decay as

Here, n is the decay rate and is typically in the range 1.1 < n _< 1.3. Substituting

these relationships into the inverse time scale equation yields

1 _nCSdt"
-_ dS = t c B

After integration, this equation is

. -c_.qa
S=at- _B

where a is a constant of integration. For there to be an inverse scaling relationship

between S and t, the exponent in the above equation must reduce to -1 for the grid

turbulence case. Since the coefficient CB reduces to 1.0 in grid turbulence, then

CB --R.

In this study, n has been set to 1.1 and held constant4, which sets the value of CB.

Now using the fact that, initially,

3
Soto = --

the coefficientsCA and CD are related as follows

1 3 CA n+l

CD 2Vf2 CD n

The coefficient c, has been evaluated for equilibrium turbulence where, where

Pk = e. Rewriting equation (2) as

Vt£

c, = k--Y

and using equations (1) and (4), this coefficients is

u--7"_2 = 0.09.
C_ = k2

After the above analysis, the only adjustable parameters are _-_ and the a coeffi-
CD

cients, which should be of the order one. The complete set of optimized coefficients

isgiven in Table I.

a_ = 0.9

a_ = 1.1

as = 1.0

c_ = 0.09

cA =1.13
CD

n=l.1

CB --/I

CB = 1 + g_v's"s"
A_ 3 c. +e.__+.!
CD = _ CD -- .

Table 1. k-e-S Model Coefficients
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2.4 Free Shear Flows

The three turbulent transport equations are solved implicitly using the finite

difference technique of Spalding 5 for parabolic equation systems. An initial profile

is imposed upon the first marching plane for the turbulent kinetic energy and the

dissipation, and S is initially set to S_ = _. In the mixing layer and jet cases,
_0 ,

the initial plane was equally divided into a uniform velocity field and still air. Fo r

the case of the plane wake, this initial profile came from a flat plate calculation

computed with the same solution technique. Starting with the initial plane, the flow

field is developed by marching the transport equations downstream and applying

the following boundary conditions,

Planar Jet

Centerline (y = 0)

Far Field (y = y,_=)

Round Jet

Centerline (r = 0)

Far Field (r = r,,,_,)

Planar Mixing Layer

°k=0 -_=0

s,,=o ((,,+,,.) )---- cbkU_=o +eA =

k=O,e=O,S=O

Ok 0¢
_-; = 0, b--; = 0

So,,O,kU..o+ ((,,+,,,) )
Sr=O = c_kU.=o+eAz

k=O,e=O,S=O

Centerline (y = Ymin) tc = 0.015,_ = 3.5 x 10 -6
V2y--Itmi_ i/=yrair,

_._lt=ymi n _ (

Far Field (y = y,_=)

Planar Wake

Centerline (y = 0)

Far Field (y = ym.=)

k=O,e=O,S=O

_- ,_-

((,,+,.,)
_lt=O = c6kU, ffio+_Az

k=O , e =O ,,5 =O

The solutions have been checked after several hundred steps to insure that the

profiles have become self-similar.

2.4.1 Planar Jet

The three equation k-e-S model performed very well for planar jet flow when

compared to the experimental data of Gutman and Wygnanski °, Bradbury 7 and

Heskestad s. Mean velocities profiles given in Figure 1 are well predicted by both the

k-e-S model and the standard k-e model, which is reassuring since the coefficients

for both of these models were optimized for the planar jet case. The spreading rates

predicted by both models are within the experimental range and are given in Table

2.

There is a slight discrepancy between the k-e-S model and the standard k-e

model for centerline kinetic energy as can be seen in Figure 2. However, both

predictions are well within the range of experimental measurements, which show

a considerable spread near the centerline of the jet. Both predictions are closely

aligned with the data of Bradbury r.

6



Lumley's Energy Cascade Dissipation Rate Model

Shear stress is also well predicted (see Figure 3) where the standard k-e model

over-predicts the shear stress at the edge of the jet in comparison to the data of

Gutman and Wynanski 6 and Bradbury r. The k-e-S model predicts a narrower

profile, also indicated by the smaller spreading rate, which agrees with Bradbury's

measurements. Towards the centerline of the jet, both models accurately predict

the increase in shear stress and the extrema near _ = 0.08.

For the next two figures, Figures 4 and 5, there is no experimental data available

for comparison. The dissipation reaches a maximum at the location of the peak

shear stress, Figure 4. From this extrema, the dissipation decreases toward the

centerllne and also eventually trails off to zero at the edge of the jet. Figure 5

shows the behavior of the time scale for the planar jet. Notice that the minimum

energy transfer time between the large scale structure to the dissipative microscale

is in the middle of the jet (where S is a maximum since the dimension of ,_ is t-I).

2.4.2 Axisymmetric Jet

A primary problem with the standard k-e model is its predictive capability for

a 2-D versus a 3-D jet, the free jet anomaly. In Figures 6 - 10, the standard k-e

model is unable to predict any of the turbulence quantities correctly, overpredicting

not only the turbulent kinetic energy and the shear stress but also the mean velocity.

The standard k-e can be "fixed" using a suggestion by Pope 9. Writing the standard

¢ equation for reference,

De cO (( v_ ) Oe ) e l e_

the correct spreading rate can be obtained by changing cl from its standard value of

1.45 to 1.6 (see Table 2). Clearly, by modifying a coefficient, the standard k-e model

is capable of predicting the correct spreading rate; however, this model cannot be

considered general. The spreading rate predicted by the k-e-S model is very close

to the experimentally measured rate and has been obtained with no modifications
to the model.

Comparisons between the k-e-S model and the experimental data 1°,n,12, Figures

6 - 10, indicates that the new model accurately predicts the mean velocity profiles

and the shearing stress across the jet. Less accurately predicted by the k-e-S model

is the centerline turbulent kinetic energy, Figure 7, where there is considerable

scatter in the experimental data.

2.4.3 Planar Mixing Layer

For the case of a planar mixing layer, neither model accurately predicts the high

speed side of the layer (see Figures 11 - 15). The experimental data is contains

a much more dispersive edge compared to the computations, Figure 11. One ex-

planation may be wind tunnel noise. Adding a boundary condition specifying a

given noise level, 12 percent fluctuating velocity, increases the spreading on the

high speed side of the computations and improves the comparisons with the data.

This boundary condition is used with both models. Unfortunately, there is no way
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to determine what the true noise level was in the experiments or whether its effect

has been properly accounted for computationally.

An analytical solution for the mean velocity profile has been described by Schlichting 14.

This analytic solution lies between the experimental data and the two computational

models for the case when a = 9.5 (a is a "tweeking" constant used to tune the ana-

lytic solution to match the experimental data. Typical values of a are between 913

and 1115.)

Both the k-e-S and the standard k-e model predict the peak value of turbulent

kinetic energy quite well (Figure 12). However, this peak is shifted toward the low

speed side of the mixing layer compared to the experimental peak. Pate116 indi-

cated that the data of Wygnanski and Fielder 13 had shifted towards the low speed

side, which is opposite from the trend noticed in this study. Since the discrepancy

between the data and the computations lies on the high speed side of the mixing

layer, the problem could be a result of wind tunnel noise as previously mentioned.

In the the plot of Reynolds stresses, Figure 13, both models over predict the shear

stress by nearly 30 percent and consequently over-predict the spreading rate given
in Table 2.

The k-e-S model and the standard k-e model predict almost identical levels of

dissipation (Figure 14). Since a turbulent kinetic energy level is specified at the high

speed boundary, the dissipation is also specified on this boundary. A constant value

of ,L = 6.5 x 10 -6 gave the best fit to the data. Figure 15 shows the inverse time

scale distribution through the mixing layer. The minimum energy transfer time,

where S is a maximum, corresponds to the location of the maximum shear stress.

At the high speed edge of the mixing layer, the time scale is specified to be S = _.

2.4.4 Planar Wake

For the case of the planar wake, the mean velocity profile is correctly predicted

towards the centerline of the wake, but drops off too quickly at the wake edges (see

Figure 16). Although the mean velocity shows the correct shape in Figure 16, the

centerline velocity is high compared to the analytical solution described in Reference
• dy

[14] (see Figure 17). As a result, the spreading rates, (_dV ,-_), predicted by

the turbulence models are 6 percent too low for the k-e-S model and 3 percent too

low for the k-e model as compared to the analytical solution. In other words, the

turbulence models are predicting a much more compact wake with a smaller velocity

defect than is seen in the experimental data or the analytical fit. This trend is also

seen in the turbulent kinetic energy profiles in Figure 18 where the k-e-S model can

predict the correct maximum intensity but drops off too quickly towards the edges.

Also, although the computed peak value for shear stress is correct the width of the

curve is too narrow, with the location of the extrema lying too near the centerline

(see Figure 19).

The dissipation levels computed by the models apparently reduce the turbulent

intensity of the flow too much near the edges of the wake, which prevents the wake

from spreading. There is unfortunately no experimental data to compare with the

dissipation curves in Figure 20. Interestingly, the location of the minimum energy

8



Lumley's Energy Cascade Dissipation Rate Model

transfer time in Figure 21 is towards the outer edges of the'wake where the mean

flow should exert its greatest influence.

Experiment k-e-S Model k-e Model

Planar Jet 0.11-0.12 0.114 0.114

Round Jet 0.085-0.095 0.095 0.126, ci = 1.45

0.0928, Cl = 1.6

Planar Mixing Layer 0.16 0.186 0.186

Planar Wake .10114 0.095 0.098

Table 2. Spreading Rate Comparisons for Free Shear Flow

3. Future Work

Future plans include:

i) Extending this model to wall bounded flow. Specifically, a low Reynolds number

version of this model will be developed for near wall turbulence.

ii) Continuing to run this model for more test cases over a variety of flow fields.
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1. Motivations and Objectives

The problem of time discontinuity (or jump condition) in the coalescence/dispersion

(C/D) mixing model is addressed in first part (PDF) of this work. A C/D mix-

ing model continuous in time is introduced. With the continuous mixing model,

the process of chemical reaction can be fully coupled with mixing. In the case

of homogeneous turbulence decay, the new model predicts a pdf very close to a

Gaussian distribution, with finite higher moments also close to that of a Gaussian

distribution. Results from the continuous mixing model are compared with both

experimental data and numerical results from conventional C/D models.

The effect of Coriolis forces on compressible homogeneous turbulence is studied

using direct numerical simulation (DNS). The numerical method used in this study

is an eigth order compact difference scheme. Contrary to the conclusions reached

by previous DNS studies on incompressible isotropic turbulence, the present results

show that the Coriolis force increases the dissipation rate of turbulent kinetic energy,

and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman

theory does apply since the derivatives in the direction of the rotation axis vanishes

rapidly. A closer analysis reveals that the dissipation rate of the incompressible

component of the turbulent kinetic energy indeed decreases with a higher rotation

rate, consistent with incompressible flow simulations (Bardinalr), while the dissipa-

tion rate of the Compressible part increases; the net gain is positive. Inertial waves
are observed in the simulation results.

2. Work Accomplished

2.1 PDF Turbulence Model for Combustion

In Collaboration with J.Y. Chen

Accurate prediction of turbulent reacting flows requires the solution of an evo-

lution equation for the probability density function (pdf) of the thermo-chemical

variables using Monte Carlo simulation. Since the pdf equation, like most equations

describing turbulent motion, is not closed, closure models have to be devised. For

the pdf of scalars, the terms in the pdf equation that need modeling are molecular

mixing and turbulent convection. The present work deals with the modeling of

molecular mixing.

Most of the mixing models are based on the coalescence/dispersion (C/D) model

by Curl 6 This model is known to have deficiencies, and efforts had been made to

correct these deficiencies, for example, Janicka, et al. 1979 and Pope 1982. The

most recent efforts have been devoted to the problem of coupling between mixing

and chemical react!on. Chen and Kollmann 4 proposed a reaction conditioned model
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that allows correct prediction of combustion in the flame-sheet regiine. Norris and

Pope 1° proposed a new model based on ordered pairing that aimed at the same end.

All the existing models suffer in one respect, namely, they are discontinuous in

time: once a pair of particles are chosen to participate in mixing, their properties will

jump abruptly regardless of the step size of the time integration. This phenomenon,

clearly non-physical, could cause difficulty in coupling the processes of mixing and

chemical reaction. In the present work, a new model that is continuous in time is

proposed. With this new model, the processes of molecular mixing and chemical

reaction can be fullycoupled.

In the case of homogeneous turbulence decay of a scalar,one expects a Gaussian

distribution for the pdf, and finitevalues for the higher moments. Pope 11 pointed

out the modified Curl model could not produce the correct pdf for this problem,

and the higher even moments from that model tend to infinity;he suggested an age.

biased sampling process to overcome these shortcomings. The present continuous

model, as we willshow, predicts a pdf distributionvery close to Gaussian for ho-

mogeneous turbulence decay, and gives finitehigher moments with values close to

that of a Gaussian distribution.

The continuous mixing model is applied to the study of both non-reacting and

reacting flows, and the resultsare compared with earliercalculationsby Hsu 7 as

well as with experimental data.

2.1.1 Molecular Mixing Model

The evolution equation of a single point probability density function of scalar ran-

dom variables ¢1,..., ¢,_ -- representing the species mass fraction and temperature

-- can be written as

N

i--1

_]lt .z [X'_= -O (Z < , kt ) = >/5)
N N

(< Ck>/5)
i=1 j=l

where the terms represent the rate of time change, mean convection, chemical re-

action, turbulent convection, and molecular mixing, respectively;/5 is the density-

weighted joint pdf:

e is the scalar dissipation:

/5 = pP/_,

eij= DO,_¢iO,_¢j,

(where D is the diffusion coefficient), and < xly > denotes the mathematical ex-

pectation of a random function x conditioned upon y.

The left hand side of the above equation can be evaluated exactly and requires

no modeling; the right hand side terms contain the conditional expectation of the
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velocity fluctuation and the conditional expectation of the scalar dissipation, which

are new unknowns and require modeling. In the present work we concentrate on

the modeling of the second term, namely, the conditional expectation of the scalar

dissipation, referred to as molecular mixing in the following.

The Modified Curl Model

The simplest and most used mixing model is the modified Curl model, which

assumes binary interaction between sample fluid particles. As described by Pope 12

in a Monte Carlo simulation, the continuous pdf is replaced by delta functions

N

e'(¢;t) =
n-'-I

where each delta function represents one sample fluid particle of an ensemble of N

particles. The evolution of P* entails the movement of the particles in the ¢-spa_e,

or the evolution of the individual values of ¢,,'s.

With the modified Curl model, the change of ¢,_ due to molecular mixing is

achieved by the following binary interaction process: divide the flow domain into

small cells, each containing N sample particles. Given a small time interval 5t and

a turbulent time scale % select randomly Nm_ pairs of particles,

_t

N,_x = 0.5_-_v N,

(C = 6.0) and let a pair, say, m and n, mix as follows

¢,,(t + 8t) = ACre(t) + (1 - A)¢,,(t) (1)

¢._(t + _t) = ACn(t) + (1 - A)¢,,,(t) (2)

where A = 0.5{, with _ a random variable uniformly distributed on the interval

[0,1]. The remaining N - 2N,_x particles remain unchanged:

¢.(t + st) = ¢.(t)

This model does not represent the true physical process since the properties of

the sample particles change discontinuously regardless the size of the time interval

St. This deficiency can be best illustrated by rearranging eq. (1) and dividing it by

_t

(¢.(t + 6t) - ¢.(t)) = ) ¢.(t)) (3)
_t

The derivative _ does not exist because as St goes to zero the right hand side of

the equation becomes infinite since both A and the difference between ¢,,,(t) and

Cn(t) are finite. This means that there is a sudden jump in the value of the scalar

quantities, which is typical of a Poisson process, but is non-physical in the present

case since the flowproperties of turbulence are continuous.
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Continuous Mixing Model

One can see from the previous section that the modified Curl model relies on the

parameter Nmz to control the extent of mixing. On the individual particle level,

it assumes complete mixing once the particle is selected as one of the mixing pair,

without considering the size of _t.

In order to achieve continuous _ng, we propose the following model: during a

time interval 6t, we assume that all the particles within a cell participate in mixing.

The extent of the mixing is controlled at the individual particle level. That is to

say, the N particles within a given cell are randomly grouped into N/2 pairs; the

properties of all the particles change according to eqs. (1) and (2) The extent

of mixing now has to be controlled at the individual particle level through the

parameter A, which is redefined as

T

where C _ = 2.0. With this new definition, eq. (3) can be written, in the limit

6t ---* 0,

d¢....__= C,__(¢m(t) _ On(t)).
dt r

The above equation states that the change of Cn due to mixing is proportional to

the difference between ¢m and Cn, and inversely proportional to the turbulence

time scale r.

The Coupling of Mixing and Reaction

The processes of mixing and chemical reaction are essentially decoupled when one

uses the discontinuous C/D models. In contrast, with the above continuous model,

coupling becomes natural since, for a given particle, mixing and chemical reaction

can be described with a single equation:

den = c"--(¢m(t)- ¢n(t))+
dt _-

where wn is the chemical source term. •

Since thecontinuous mixing model allows full coupling of the reaction and mixing

processes, the C/D model with reaction zone conditioning by Chen and Kollmann 4

can be easily implemented in the present model to simulate the fast reaction in the

flame sheet regime. Here a modified finite difference version of eq. 12 has to be

used since wn is infinity in case of fast reaction.

2.1.2 Results and Discussions

The continuous mixing model described in the previous section has been vali-

dated using both non-reacting and reacting flow test cases. The results and their

comparisons with earlier calculations (Hsu r) using the modified Curl model as well

as with experimental data are presented in this section.
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Homogeneous Turbulence Decay of a Scalar

The case of decaying fluctuation of a passive scalar in homogeneous turbulence

is used to test the continuous mixing model. The initial condition is

1 FNI_ N 1

P'(¢;t) : -_ [_ _f(¢- l) +, '*="1'+'_ _f(¢+1) ,]

that is, in the Monte Carlo simulation, half of the particles are ascribed the value

1, and the other half-1.

The pdf distribution of the normalized variable (¢- < ¢ >)in, where < ¢ > is

the mean and a is the standard deviation, in the homogeneous turbulence decay

problem converges to a single curve after certain time, and the correct distribution

should be Gaussian. Fig. 1 and 2 are the pdf distributions from the modified Curl

model and the present model, both compared to a normal distribution. One can

see that the pdf from the modified Curl model deviates considerable from Ganssian,

while the result from the present model is fairly close to a Gaussian distribution.

The evolution history of the rms and fourth and sixth moments of the scalar

fluctuation are calculated using both the modified Curl model and the present

continuous model. Fig. 3 shows the results from the modified Curl model. One

can see that although the rms from that model behaves well, the fourth and sixth

moments grow quickly out of bound, oscillating at a level several order of magnitudes

higher than the value of Gaussian distribution. These results are similar to what

Pope ll had observed. Fig. 4 shows the results for the same set of quantities from the

present model. The rms behaves similar to that from the modified Curl model. The

fourth and sixth moments, on the other hand, are quite different from those of the

previous model; they rise smoothly to the value predicted by Gaussian distribution.

Although the values do not seem to converge, they remain finite, and are of the

same order of magnitude as that of the Gaussian distribution.

The above results clearly demonstrated the advantage of the present model over

that of the modified Curl model. Pope 1I had devised an age biased scheme that

achieved the same end, which required an additional variable, namely the age of

the particles, and two extra adjustable parameters. In contrast, the present model

needs noextra work or parameters.

Heated Turbulent 3et

Extensive experimental results for a heated turbulent plane jet have been reported

by many authors (Bashir, et al. 2, Browne et al.3, Uberoi and Singh 13, Jenkins 9, An-

tonia, et al.1). The turbulent jet has a slightly higher temperature than the ambient.

Measurements of both the the mean temperature and the rms of temperature fluc-

tuations were given. We compared the solutions for the heated turbulent jet from

the new model with experimental data as well as with previous solutions (Hsu 7)

obtained using the modified Curl model.

In the present study, a combined CFD--Monte Carlo algorithm is used. The

mean flow field is obtained by solving the Navier-Stokes equation and a two-equation
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turbulence model using a finite difference scheme. The temperature is treated as a

conserved scalar and simulated by the pdf equation.

Fig. 5 shows the comparisons of the the mean temperature distribution from

the pdf Monte Carlo simulations and experimental data from various authors. The

figure shows that both mixing models predict the mean temperature distribution

accurately.

The results for standard variation, or rms, of the temperature distribution are

given in Fig. 6. Although the two solutions do not show significant difference, the

new model seems to agree slightly better with the experimental data. The skewness

and the flatness, i.e., the third and fourth moments of the temperature fluctuation,

are given in Figs. 7 and 8; the comparisons show that in the present case of a

turbulent jet the statistical behavior of the new model is similar to that of the

modified Curl model.

Hydrogen-Fluorlne Diffusion Flame

The continuous model has been applied to the H2mF2 diffusion flame studied

earlier by Hsu 7. The flow conditions are set according to an experiment performed

by Hermanson and Dimotakis 6. The flame consists two streams. The upper stream

contains 96% of N2 and 4% of F2, the flow velocity is U] = 22 m/s; the lower stream

contains 96% of N2 and 4% of//2, with velocity U2 = 8.8m/s. The estimated

DamkShler number ranged from 25 to 130 (Hermanson and Dimotakis6), and a fast

chemistry model is deemed appropriate in the calculation. Again a modified version

of eq. 12 is used to accommodate the fast chemistry.

Fig. 9 shows the temperature rise due to combustion. In the figure, _T is the

shear layer thickness determined by 1% of the temperature rise, AT is the actual

temperature rise due to combustion, ( the two streams have the same temperatures

initially,) and ATad! is the adiabatic flame temperature assuming complete reaction.
Details on the flow conditions can be found in Hermanson and Dimotakis 6. The

agreement between numerical predictions and experimental data is fairly good, and

a comparison of the results from the continuous model and that from the modified

Curl model shows that both performe d well for this case.

Combination with Reaction Zone Conditioning

Chen and Kollmann 4 developed a mixing model based on reaction zone condi-

tioning, aimed at the coupling of reaction and mixing. We have shown in Section 2.3

that with the present model, the processes of reaction and mixing can be fully cou-

pled; therefore it is only natural to apply the reaction zone conditioning suggested

by Chen and KoUmann here.

The H2--F2 diffusion flame problem is reformulated such that the chemical reac-

tion is confined to a very narrow zone near stoichiometry. By applying reaction zone

conditioning to the continuous mixing model, we were able to produce a scatter plot

of the temperature vs. mixture fraction in which all the points reached the equi-

librium temperature. This result is shown in Fig. 10. The mixture fraction here is

defined as the molar concentration of fuel divided by the total molar concentration,

and stoichiometry is located at f = 0.5.
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2.1.3 Conclusions

A turbulence mixing model that is continuous in time has been introduced. The

deficiency of non-physical jump condition in the mixing process is removed in the

new model. It has been shown that the new model is superior to the existing

modified Curl model (Janicka, et al.8) in that it can predict a Gaussian distribution

and finite higher moments in the case of homogeneous turbulence decay; it has

accomplished what the age biased sampling scheme (Pope 11) is designed for, without

the extra parameters required by that scheme. The numerical results from the

present model compare well with experimental data.

2.2 DNS of Homogeneous Compressible Turbulence in a Rotating frame

Rotation is an important factor in many flow phenomena in nature and in engi-

neering. Problems that are strongly affected by rotation include flows in turboma-

chinery, large scale motions in the atmosphere and oceans, and galactic motions.

Turbulence is important in all the above examples. In order to model turbulence

in a rotating frame, we need a better understanding on the effects of rotation on

turbulence.

Several experiments had been carried out by various researchers 14-1_. However,

the conclusions are inconsistent. Some results show that rotation increases the

turbulence dissipation rate, others suggest the opposite.

Numerical studies of turbulence in a rotating frame are few. In fact the only

two are incompressible flow studies, by Bardina, et al. 1_ and by Speziale et al.is,

using the same computer program. Studies other than the present one dealing with

compressible flows in a rotating frame are not known to the authors.

Bardina et al. 17 performed both large eddy and full simulations of incompress-

ible isotropic turbulence. Their results show that, in the case of incompressible

turbulence, the dissipation rate decreases with increasing rotation rate, and that

anisotropy does not develop as a result of the Coriolis force. Speziale et al. con-

firmed these results using a smaller Rossby number, i.e. a faster rotation.

In general, compressible turbulence in a rotating frame is not homogenous or

isotropic because of the existence of centrifugal force and density fluctuations. How-

ever, when the rotation rate is low, or when the solution domain is very close to the

rotation axis, the centrifugal force can be neglected and the flow is approximately

homogeneous. In the present study, our goal is to identify the effects of the Cori-

olis force, as opposed to the effects of the centrifugal force or the combined effects

of the centrifugal and Coriolis forces. Therefore, the centrifugal force is dropped

from the governing equations, regardless of whether or not it is negligible. A future

study will concentrate on the non-homogenous effects of the centrifugal force and
the combined effects of the two forces.

The numerical results presented in the following show that although the Cofiolis

force does not appear explicitly in the turbulence kinetic energy equation, its effect

can be significant. Anisotropy does develop as a result of the Coriolis force. The

dissipation rate of the compressible and incompressible modes of the turbulent ki-

netic energy behave differently under Coriolis forces, and the combined effect is a
1
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increased dissipation rate.

2.2.1 Method

The governing equations for compressible flows in a rotating frame are

p,t+ =0
(pui),t "%(pujui)j ---- --P,i "b rij,j - peijteklmNj_lXm -- 2peiik_jUk

(pe),t + (puje)j = -pujj .% ui,ffij - (kTj),:i

p=pRT

The last two terms in the second equation represent, respectively, the effects of

centrifugal force and the Coriolis force. The centrifugal force is a nonuniform body

force which would induce nonuniform pressure and density distributions; its effect

on turbulence is to destroy homogeneity. The Coriolis force, on the other hand, is

a uniform body force, provided that the velocity field is uniform. In the case of

incompressible flows, the centrifugal force can be included into a modified pressure

term and thus does not appear explicitly; however, this can not be done in the case

of compressible flows.

In order to identify the homogeneous effect of the Coriolis force alone, and to

compare results with incompressible flow simulations, we simply take away the

centrifugal force in our study. This, of course, greatly simplifies the problem: With

a homogeneous initial condition, the flow field remains homogeneous under the

Coriolis force. The simplified problem is a hypothetical one and can not normally

be found in nature except in very restricted situations such as the ones mentioned

in the introduction.

The governing equations are solved using a compact difference scheme. Lele 19 has

shown that such schemes have spectral accuracy and are well suited for DNS. The

spatial derivatives are approximatedby 8th order finite differences, and the time

integration is performed using a three-stage Runge-Kutta time marching scheme.

The initial condition for the rotating flow simulation is obtained from a simulation

of isotropic decaying turbulence. The initial condition for the decaying turbulence

is generated using a given 3D spectrum of the form

After the decaying turbulence shows the correct skewness, the Coriolis force is

imposed onto the flow field.

2.2.2 Results and Discussion

As a primary study, three cases have been calculated, with rotation in the z-

direction: The nondimensional rotation rates are _ = 0, 40, 80, which correspond

to turbulent Rossby numbers of c_, 0.0075, and 0.00375. These Rossby numbers

are much smaller than those considered in References 17 and 18.
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Figures 11 and 12 show the development of a 1D two-poiIit correlation and a 1D

spectrum in the turbulent flow field, where square symbols are initial conditions and

lines represent later times. Figure 13 shows a comparison of the energy spectrum

obtained using two different grids, one double the size of the other. The agreement
affirms sufficient resolution.

Figures 14-19 Show the time history of various statistics of the three cases, where

time is nondimensionalized using the initial eddy turn over time.

Figure 14 is the ratio of the turbulent kinetic energy, where q_ is the initial

turbulent kinetic energy and q2 the value at later times. It is immediately clear

that the Coriolis force causes a faster decay of the turbulence, a conclusion that is

contrary to what was observed in the incompressible flow simulations by previous

researchers lr,18. Nevertheless, as we shall see in the following, the present results

are in fact consistent with those of Refs 4 and 5.

To prove that the present results are consistent with the previous incompressible

simulations, we look at the ratio of the means of the divergence squared and vorticity

squared, which are proportional to, respectively, the compressible and incompress-

ible turbulent kinetic energy. Figures 15 and 16 show that while the dissipation

rate of the compressible part of the turbulent kinetic energy increases with larger

Coriolis forces, the dissipation rate of the incompressible part decreases. The com-

bined effect, as we have seen from Figure 14, is an increase in the total dissipation

rate. Since the simulations of References 4 and 5 are for incompressible flows, it is

not surprising that only a decrease in dissipation rate was observed.

In both References 17 and 18, no anisotropy was observed. Bardina et al. 17

speculated that a reorganization to two-dimensional flows could occur at higher

rotation rates, while Speziale et al. suggested that Taylor-Proudman reorganization

would not occur in a rapidly rotating isotropic turbulence. The present results show

definite signs of anisotropy as soon as the Coriolis force is turned on. The anisotropy

can be clearly observed from the time history of the normal components of the

Reynolds stress, given in Figures 17, 18, and 19 for the three rotation rates. With

the Coriolis force, the x- and y-components of the normal Reynolds stress decrease

much faster than the z-component. In fact, it seems that the increased dissipation

is primarily in the x- and y-directions, and the z-component of the turbulent kinetic

energy is not affected much.

The Taylor-Proudman theory stipulates that under strong rotation, with the

rotation axis parallel to, say, the z axis, then for any flow variable u, we have

(Ou/Oz) = 0. Figures 20 and 21 are the contours of the x-component of velocity

plotted on three planes. Without the Coriolis force (Figure 20), the flow struc-

ture remains isotropic. With the Coriolis force, columns soon appear in the flow

field, suggesting that a Taylor-Proudman reorganization has occurred. Using larger

Rossby numbers such as those used in References 17 and 18, the results show no

appreciable anisotropy, hence there appears to be no contradiction.

Finally, inertial waves can be observed from the time history of various statistics

presented in Figures 14-19. The frequency is approximately O/z', the theoretical

intrinsic frequency for rotating flows.
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3.1 PDF

The pdf model is being implemented into an existing compressible flow solver:

the RPLUS2D code. Work on implementing pdf to RPLUS3D will follow.

3.2 DNS

To understand the effect of compressibility, incompressible homogeneous turbu-

lence in a rotating frame will be studied.
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Modeling of Turbulence and Transition

Tsan-Hsing Shih

1. Motivation and Objective

The first objective is to evaluate current two-equation and second order closure

turbulence models using available direct numerical simulations and experiments,

and to identify the models which represent the state of the art in turbulence mod-

eling.

The second objective is to study the near-wall behavior of turbulence, and to

develop reliable models for an engineering calculation of turbulence and transition.

The third objective is to develop a two-scale model for compressible turbulence.

2. Work Accomplished

2.1 Evaluation of two-equation models (N.J. Lang and T.-H. Shih 1)

Twelve two-equation models including k - e, k - r, k - w and q - w models,

have been evaluated using a common flow solver code (GENMIX) for wall bounded

turbulent flows. For each model, calculations were carried out for two-dimensional,

fully developed channel and flat plate boundary layer flows. These flows are ap-

pealing for model testing because they are simple and self-similar, yet demonstrate

important features of wall bounded turbulent shear flows. In addition, we can

compare these calculations with Direct Numerical Simulations (DNS). A list of the

models which were tested axe shown in the table below:

Ch Chien 2 1982 k - e

Sh Shih 3 1991 k - •

LB Lain and Bremhorst 4 198i .... k - •"

NH

NT

LS

JL

MK

YS

WI1

Nagano and Hishida 5 1987

Nagano and Tag awa 6 1990
Launder and Sharma 7 1974

Jones and Launder s 1973

Myong and Kasagi 9 1988

Yang and Shih 1° 1991

Wilcox 11 1984

k-•

k-w

WI2 Wilcox 12 199i k - w

SAA k - T

Co

Speziale, Abid and Anderson 13 1990

Coakley 14 1983 q--0./

Two dimensional channel flow calculations were made at Re_. = 180 and Re,, =

395. These cases were compared with DNS data of Kim et a115. Calculations for

the two-dimensional flat plate boundary layer flow at Reo = 1410 were compared

with DNS data of Spalart 16. Some flat plate boundary layer comparisons were made
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between the experimental data of Klebanoff x7 at Reo = 7700 and solutions of the

various models. The detailed results are reported in NASA TM 105237, 1991.

An ".important criterion for two-equation model comparisons is not only how well

the model predicts mean velocity and shear stress, but also the turbulent kinetic en-

ergy and dissipation (or specific dissipation) rate. These predictions should provide

appropriate turbulent velocity and length scales so that the model can be applied

to more complex flows for which a simple mixing length model often fails. Some

researchers maintain that it is not critical whether or not the turbulent kinetic en-

ergy and the turbulent length scale are predicted with great accuracy. However,

one may imagine that a two-equation model making unreasonable turbulent veloc-

ity and length scale predictions would be very questionable when applied to more

general flows. A model which accurately predicts the shear stress and mean veloc-

ity does not imply that it has correctly modeled the turbulent kinetic energy and

length scale. In fact, if the turbulent kinetic energy is incorrect, then the length

scale must also be incorrect to compensate for the error in the turbulent kinetic

energy. For this case, two wrongs are making a right. This warrants some caution

when computing flows for other geometries.

Comments on two-equation models:

It is clear that the JL, LS, WI1 and WI2 models underpredict the near wail

turbulent kinetic energy compared to the other models.

The standard k - e model has been proven to provide good results in the high

Reynolds number range. It is therefore attractive for a near wall k - e turbulence

model to approach the standard k - e model away from the wall. The LB, LS and

YS models are the only k - e models in this study which possess this-characteristic.

Because boundary layer and channel flows are serf-similar, the solutions should

be independent of the initial conditions. However, some of the models (SAA, Co,

and LB) have difficulty when the initial conditions contain large gradients. The Co

Model is particularly dependent on the initial conditions. Even slight perturbations

of the initial conditions will yield noticeably different solutions with this model.

JL, LS, WI1 and WI2 are the only models which do not contain y+. Damping

functions which contain y+ are not desirable because y+ is erroneous near flow

separations and not well defined near complicated geometries. Unfortunately, these

are the same models which poorly predict the near waft turbulent quantities.

The Wilcox models (WI1 and WI2) suffer from a numerically awkward boundary

condition for w at the wall:

6u y+w-_c---_u as -_0

We cannot define w at y+ = 0. We have tried two ways to approximate w as y+

approaches 0. First, we chose a large number for w_,_u and, second, we used an
6v Test cases showed that the solution does not convergeasymptotic w,_,au = "Sg_"

as w,o=u _ ov when y+ _ 0 for either model. In addition, both Wilcox models

underpredict the turbulent kinetic energy peak value for both boundary layer and

channel flows.
v
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model the new unknowns Tij, Ilij and ¢ij. At the level of the sec()nd order closure,

these new unknowns are usually modeled with algebraic equations in terms of the

second moments and the mean quantities (with the exception of the trace ¢kk = 2¢,

which is modeled with a transport equation).

In a general turbulent shear flow with moderate inhomogeneity, the turbulent

diffusion terms in the second moment equations are usually smaller than the other

terms. However, the pressure-strain rate and dissipation rate tensors are always

among the leading terms. Therefore, the performance of modeled equations largely

depends on the models of pressure-strain rate tensor and dissipation rate tensor.

In this study, we only concentrate on themodels of the pressure-strain rate tensor

and the dissipation rate tensor for the velocity field: H O - eO, which are modeled

a_
2

- = n!2) - _E&_n,_ E_j ri_) +__,_

where II_) ), H_ ) are respectively referred to as the rapid term and the return-to-

isotropy term.

Models for the rapid term H_ )

Launder_ Reece and Rodi (LRR): is

2 5

2_ 22 -

where C2 = 0.4, and

+
1o- 7c2

22 (bikfljk + bjkfllk)

(2.2.1)

uiuj 1

1

&j = _(u_,j + u_,,),
1

This model is linear in the Reynolds-stress. It contains only one model constant C_.

This model satisfies the conventional model constraints 34. It is the most general

form at the level of linear dependence on the Reynolds-stress. However, as Lumley 24

pointed out, this model may violate realizability as the turbulence approaches a

two-component state.

.Speziale, Sarkar and Gatski (SSG): 19

o.s- C;'s,j cr_Pb,j
2-_ - 4 2q2

(2.2.2)2

+ _-_(bikSjk + bfl, Sa: - -_lfijbktSk,)

+T
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where,

C_* = C_(bijbij) 1/2, P = -uiu]Uij

e I=1.8 c_=1.3, (74=1.25, c5=0.4

This model is quasi-linear in the Reynolds-stress, because the coefficients in the

first two terms are not constant, but depend on the invariant of the Reynolds-

stress tensor and the production P. This model contains four model constants

(C_,C_,C4,Cs), therefore one may imagine that it will be difficult to correctly

calibrate them. In addition, this model does not satisfy the normalization constraint

which is one of the basic model constraints 34. If we impose this constraint, then

the four coefficients will reduce to only one, and this model will reduce to the LRR

model. Finally, like the LRR model, the SSG model may also violate realizability.

Fu_ Launder and Tselepldakis (FLT}: 2°

2q2

+

+

+

+

+

2 _ijbktSkt)0.2SIj -I- 0.3(bikSjk + bjkSik - -_

1.3

-_-(b_kf_k + b_ffhk)

2 3bijbktSkt)0.2(b_tSjt + b_tSit - 2b_:jbtiS_:l -

2
0.2(b_fl2j, + bS2i_ )

r[4b_.(bikf_ik + b_kf_k )

12b,nib,_j(bmkf_nk + bnkf_mk )] _

(2.2.3)

where r = 0.7, bi_ = bikbkj.
This model is cubic in the Reynolds-stress. The final form selected contains

one model constant. This model only satisfies a part of the realizability condition,

corresponding to a two-component state of turbulence. However, when a scalar

field is involved, this model cannot satisfy Schwarz' inequality between velocity and

temperature. This part of realizability is sometimes called joint realizability.

Shih and Lumlev (SL): 21

260b_tSki)
-- = 0.2Si i + 3a5 (bit_Sjk + bjj:Si_ - "_

2q 2

1 (2 - 7as)(bo, f_jk + bikf_is,)

2
+ 0.2(b_itSjt + bjtSit - 2b_jbtiS_t - 3biibktS_t)

2 .
+ 0.2(b_tn./t + bjtft,t)

(2.2.4)

where,

9 bc_5 = (1 + 0.8Ft/2), F = 1 + 9bi_bp:bki - _bi_ ii

This model is quasi-quadratic in the Reynolds-stress, because the model coefficient

a_ is a function of the invariants of the Reynolds-stress tensor. We emphasize that
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this model is obtained from a more general form of the expressioh than the FLT,

and satisfies both the two component condition and Schwarz' inequality between

the velocity and scalar fields. In addition, the final form is simpler than the model

of FLT.

Shih and Mansour (SM): 22

2
- 0.2S_j + 3as(bi_Sjk + bp:Si_ - -5_jbklSkZ)3

+ 3(2 - 7as)(b_f_k + b_'kn_k)

2 _ 3biibkzSkl )+ 0.2(b_tSil + bjtSa - 2bkjbuSkl

+ 0.2(b_/ftjt + b_,fli,)

(2.2.5)

where, a5 = _{1 + 3.511 - (1 - F)l/4]}.

This model has the same form as the SL model. It was derived in a different way

and contains a different model coefficient as which was calibrated from one of the

DNS data (Rogers3°). This model, like the SL model, fully satisfies realizability
conditions.

Models for the return-to-isotropy term II_ )

Rotta: 2a

II_ ) = -eCb,j (2.2.6)

where, C = 3.0.

This model is linear in the Reynolds stress, and contains one model constant. It

was widely used and adopted in the LRR model. We notice that this model wiIl not

allow the turbulence to reach a two-component state, because when any turbulent

component reduces to q2/9, the model Eq.(2.2'6) will force it to grow.

Lumley: 24

IIl_ ) = -E[_blj + "7.(b_j + 2II_ij /3)] (2.2.7)

where, 7 = 0 and

F

f_ = 2 + -_ exp(-7.77/_e){72/vf-_ -t- 80.1 ln[1 + 62.4(-II + 2.3III)]}

Re -- q..-_2
9ev

This model is quasi-linear in the Reynolds stress, because 7 is set to zero, and/?

is a function of the invariants of Reynolds stress tensor. This model is simple, and

satisfies realizability.

Sarkar and Speziale (SS): 2s

H_ ) -- -_[Clb,j - 3(C1 - 2)(b_j - __bj:k_,j)]1 (2.2.8)
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where C1 = 3.4.

This is a quadratic model in the Reynolds-stress tensor. It satisfies what is

called the weak realizability condition. Like the Rotta model Eq.(2.2.8), this model

will not produce unphysical results. However, it will not allow the turbulence to

approach a two-component state, which could occur in some situations, for example,

in near-wall turbulence.

Haworth and Pope (HP): _°-

1 2

YI_ ) = -e{ Cl blj - C2['_b,j "4-bij - b_tc(b,j "4-_,j/3)]} (2.2.9)

where C1 = 8.3, C2 = 14.8.

Eq.(2.2.9) is a slow part of the Haworth and Pope's model for the situations

with no mean velocity gradient. This model, like the SS model, will not produce

unphysical results; however, it will also not allow the turbulence to approach a

two-component state.

Choi and Lumley (CL): 27

If III >_ O,

II_ 2) = -e[_bij + "7(b2j + 2IIlfq/3)] (2.2.10.1)

where,

p'F1� 2
8=2+

14.G x 2

p*F 1/2 G

I+Gx 2

= (IIII2) 1/a, I7 = (-III3) 1/2

-_ G --- -X 4 4- 0.8X 6
X=_/'

7.69

p* = exp[-9.29/Rel/2]{( Rel/2

II = -bijbq/2,

73.7. [296 16.2(X 4- 1)4111}

III = b_jbjkbkd3

If III < 0,

II_ )- Eq.(28) (2.2.10.2)

The model coefficientsin Eq.(2.2.10.1) were obtained using their comprehen-

sive measurements of turbulence relaxing from axisymmetric expansion. Both

Eq.(2.2.10.1) and Eq.(2.2.10.2) satisfyreatizability;however, Eq.(2.2.10.1)is valid

only for III > 0, because _ isnot defined when III < 0.

Craft and Launder (C&L): 2s

II! 2.) -- -CIE[2bij 4- 4C_ (b,_ - b_.k6ij/3)] - 2eb,j
,--t 3

(2.2.11)
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where,

C1 = 3.1(A:A) 1/2, C_ - 1.2

9

A2 = 4 bijbji, A3 = 8 bijbjkb_i, A = 1 - _(A2 - A3)

This model is tensorially quadratic in the Reynolds stress, and satisfies re_lizability.

Yamamoto and Arakawa (YA): 2°

II_ ) "- -¢[al blj + a2(bi_ - b_kSO/3)] (2.2.12)

where,

ax - 2 ÷ p F [q + Ib  l'sign(b k)]

a2 = 3 (al -- 2)

p=-12, q=-0.55, r=0.4, s=0.45

9_
F-- 1 - _bkk + 9 b_k

The YA model tried to fit situations with both positive and negative b_k.

meets the requirement of realizability..

Shih and Mansour (S&M): 22

It also

H_ ) - -e{(2.0 + CIF_)b, j + _/[b_j + (1/3 + 2II)b 0 + _Ilifij]} (2.2.13)

where,

C! = (1/9) exp(-7.77/v/-R-le){72/x/'-_ + 80.1 ln[1 + 62.4(-II + 2.3III)]}
9_

? = "/o(1 - F'7), Re = q2___"
9¢t/

F = 1 + 911 + 3111

1 1

II = -_bobij, III = -_bijbjkbki

=17/20, z/=1/20, 7o=-2

This model matches the data of Comte-Bellot and Corrsin _1 and meets the require-

ment that there will be no return to isotropy in the zero Reynolds number limit.

This model also satisfies realizability.

Concluding remarks ..

We notice that the Reynolds number in all these simulations is low and therefore

may not represent real turbulence in nature. However, the model terms concerned

here are mainly pressure related correlations. The fluctuating pressure is not di-.

rectly related to the viscosity, hence the pressure related correlation terms may

not be directly affected by the Reynolds number, especially the rapid term. The

return-to-isotropy term, which includes the deviatoric part of the dissipation rate
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tensor may have some dependence on the Reynolds number: According to the above

consideration, we think that direct comparisons with low-Reynolds DNS data are le-

gitimate, although we should keep in mind the possible low-Reynolds number effect

"of the DNS data.

We have directly compared five rapid models with fifteen DNS flows: four of

Rogers et al.'s 3° shear flows, eleven of Lee et al.'s 31 irrotational strain flows (axisym-

metric contraction, axisymmetric expansion and plane strain). Comparing the per-

formance of the LRR and SSG models, which are tensorially linear in the Reynolds

stress, we conclude that the SSG model gives very little improvement over the LRR

model. In fact in many cases, it is worse than the LRR model. The reason is not

very clear. However, we notice that the SSG model does not satisfy the normal-

ization condition which may be a cause for its poor behavior. If we impose this

constraint on the SSG model, then it will exactly reduce to the LRR model. In fact

it can be shown that the most general form of the rapid model, which is tensorially

linear in the Reynolds stress, is the LRR model. Therefore, in general, the treat-

ment used in the SSG model would hardly give any improvement over the LRR

model. A natural way to improve the model is to use a more general nonlinear form

and. more general model constraints. A typical example is the SL 21 model. It starts

with the most general form, .using full realizability constraints together with the

other conventional constraints 34. The result is a well behaved model. Indeed, from

the direct comparisons with the DNS data, the SL 21 model and its variation form

of SM 22 model give the best performance in most of the cases. As to the FLT 2°

model, it is also a nonlinear model. It starts with a tensorially cubic dependance on

the Reynolds stress with constant coefficients (in general, these coefficients should

not be restricted to constants). In addition, the two-component conditions of tur-

bulence have been imposed. However, the FLT model ignores Schwarz' inequality.

Its final form contains two undetermined model constants, but one of them is set

to zero. The performance of the FLT model, from the direct comparisons with the

DNS data, is better overall than the linear models, but does not compare with the

performance of the SL and SM models. So from these direct comparisons of the "

rapid models, we conclude that the SL 21 model and its variation form SM 22 are

clearly the best. Having said this we notice that, as Reynolds 33 pointed out, any of

these rapid models will not show any effect of rotation on the invariants (II, III) of

the anisotropy tensor bij. This is clearly a theoretical deficiency of the current rapid

models. A further investigation is needed to find out how serious this deficiency

will be in practice.

We have directly compared eight return-to-isotropy models with thirty four DNS

flows: four shear flows and thirty relaxation flows from axisymmetric contraction,

axisymmetric expansion and plane strain. As was discussed earlier, all the return-

to-isotropy models are variations of Eq.(2.2.7) derived by Lumley 24. Therefore

the differences in the models are due to the different choices of the model coeffi-

cients. Two linear models are due to Rotta 23 and Lumley 24 (which is quasi-linear

in bij). Lumley's model satisfies realizability, matches the data of Comte-Bellot
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and Corrsin a2 and the limit of the final period of decaying turbulence. It per-

forms perfectly when III< 0. It also compares well with the DNS data in which

III >_ O. Rotta's model does not compare with the performance of Lumley's model.

In fact, the nonlinear models of SS, YA, HP and C&L also do not compare with the

performance of Lumley's model. Apparently the model coefficients chosen in these

models axe not appropriate. The CL 27 model is designed for flows with III> 0 and

is based on their experiments on relaxing turbulence. It does work better than Lum-

ley's model when III> O. Finally, the S&M 22 model is a nonlinear model; it works

just like Lumley's model when III< 0. When III >_ O, it shows an improvement

over Lumley's model according to the DNS data. So from these direct comparisons

of the return-to-isotropy models, we conclude that the combination of Lumley's

model and Choi's model, that is the CL _ model, will give the best performance.

The S&M 22 model seems as good as the CL model according to these comparisons.

Having said this, we notice that the existing return-to-isotropy models do not follow

the relaxation flows from expansion and plane strain very well. Therefore there is

still a need to further investigate and improve the return-to-isotropy models.

For detailed comparison in each flow see the reference _4.

2.3 Near-wall behavior of turbulence

The near-wall behavior of turbulence is re-examined in a way different from that

proposed by Hanjalic and Launder 35 and followers 36,37,3s,3. It is shown that at a

certain distance from the wall, all energetic large eddies will reduce to Kolmogorov

eddies (the smallest eddies in turbulence ) . All the important wall parameters, such

as friction velocity, viscous length scale, and mean strain rate at the wall, are

characterized by Kolmogorov microscales. According to this Kolmogorov behavior

of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy,

dissipation rate, etc. at the location where the large eddies become "Kolmogorov '_

eddies, can be estimated by using both direct numerical simulation (DNS) data

and asymptotic analysis of near-wall turbulence. This information will provide

useful boundary conditions for the turbulent transport equations. As an example,

the concept is incorporated in the standard k-e model which is then applied to.

channel and boundary layer flows. Using appropriate boundary conditions (based

on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-

modification to the k-e equations (including model constants). Results compare

very well with the DNS and experimental data.

Here we only list the results from this study, for the detail see NASA TM 105663.

Model equation and boundary condition

The K-e equations for incompressible flows can be in general modeled as:

De tit
= [(u + --)e,i],i + Cl/_urU_,j(Ui,_ + Uj,_)K

O'e

e 2

-- 62f2-_ -_- VVTVi,jkVi,jk
(2.3.2)
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C1 =1.44, C2=1.92

t,_ Rt2 ,_ K 2
fl =1, f2=l-0.22exp, 36" Rt=mu_ (2.3.3)

ak=l, ae=l.3

These equations are used only for the flow field outside of the turbulence limit point

Ys, where K s is non-zero. Therefore, Eq.(2.3.2) will not have singularity problems

and will not need any near-wall modifications like other K-e models do. 2,s

Eddy viscosity:
K 2

vT = C_.f_, T (2.3.4)

where,

C, = 0.09

f_ = [1 - exp(alRk + a3R_ + asR_)]½

al ---- --1.5 • 10 -4 a3 = --1.0.10 -°

K1/2y
Rk --

V

a5 = -5.0 • 10 -1° (2.3.5)

Boundary conditions: at yn = 6v/u,.,

,, = 0.251 ' (2.3.6)
V

Kn = 0.250u_ (2.3.7)

In practical applications, Re_. and Re¢_ are large numbers, hence y,7/L (L is the

length scale of a flow field) is usually very small. Therefore, as an approximation

we may let ys/L = 0, but es and Kn must be given by Eqs.(2.3.6) and (2.3.7)

respectively. These equations have been applied to the calculations of channel and

boundary layer flows.

Comparison of models

To compare the present model .with the DNS data and other models (e.g. Jones

and Launder s, and Chien2), we have made calculations on two channel flows 15'4°

and two boundary layer flows 16,1T. In the present model, all the model constants

are the same as used in the standard K-e model 39. Therefore the present model

will also be suitable for flows away from the wall. The other two models used here

for.comparison do not have this property. Results are shown in figures 1 - 4. In

figure 1 and figure 2, three models are compared with two DNS data for channel

flows: one with R_ = 180, the other with Re, = 395. The profiles of mean velocity,

Reynolds stress, turbulent kinetic energy and its dissipation rate are plotted in these

figures. The present model is significantly better than the other two models. Figure

3 shows the similar comparison for a turbulent boundary with R_o = 1410. The

agreement between the present model and DNS data is excellent. Figure 4 shows
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the results compared with Klebanoff 17 and other boundary layer ekperiments. The

skin friction from DNS data 16 is also shown in this figure. The results of present

model are more consistent with the DNS data than the experiments.

It is also worthwhile to emphasize that the present model equations with the

standard model coefficients have the simplest form among all two-equation models.

Hence, we expect that they will have less numerical stiffness in complex turbulent

flows.

2.4 Modeling of transition (Z. Yang and T.-H. Shih)

A model of intermittancy based on the shape factor is added to a two-equation

k-c model for prediction of boundary layer transition with a free stream turbulence.

The detailed model and calculations are give by Yang in this year's Research Briefs.

2.5 Modeling of compressible turbulence (W.W. Liou and T.H. Shlh)

A two-scale model is proposed based on Hanjalic-Launder's multiple-scale concept

for compressible turbulence, in which a distinct scale created by the compressibility

is modeled separately by considering the effects of pressure-dilatation and dissipa-

tion dilatation on large-scale energy transfer rate. The detailed model is given by

Liou in this year's Research Briefs.

2.6 Direct numerical simulation of compressible flows (A. Hsu

and T.-H. Shih)

In order to have a better understanding of the effect of compressibility on tur-

bulence, especially the effect of the formation of eddy-shocklets on turbulence, a

direct numerical simulation of compressible homogeneous shear turbulent flows is

been performing. The data of all turbulence statistics are very useful for turbulence

modeling. The detailed simulation is given by Hsu in this year's Research Briefs.

3. Future Plans

Development of second order closure models: pay special attention to the effects

of inhomogeneity, non-local property, frame-rotation, compressibility, near-wall be-

havior in the buffer and log-layers.
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Turbulence Modeling and Experiments
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1. Motivation and Objective

The best way of verifying turbulence models is to do a direct comparison between

the various terms and their models 1,2,s. The success of this approach depends upon

the availability of the data for the exact=correiations (both experimental and DNS).

The other approach involves numerically solving the differential equations and then

comparing the results with the data. The results of such a computation will depend

upon the accuracy of all the modeled terms and constants. Because of this it is

sometimes difficult to find the cause of a poor performance by a model. However,

such a calculation is still meaningful in other ways as it shows how a complete

Reynolds stress model performs.

In this study thirteen homogeneous flows are numerically computed using the

second order closure models. We concentrate only on those models which use a

linear (or quasi-linear) model for the rapid term. This, therefore, includes the

Launder ,Reece and Rodi 4 (LRR) model; the isotropization of production 4 (IP)

model; and the Speziale, Sarkar and Gatski 5 (SSG) model. The purpose of this

study is to find out which of the three models performs better and what are their

weaknesses, if any.

The other work reported here deals with the experimental balnces of the second

moment equations for a buoyant plume. Despite the tremendous amount of activ-

ity toward the second order closure modeling of turbulence, very little experimental

information is available about the budgets of the second moment equations. Part

of the problem stems from our inability to measure the pressure correlations. How-

ever, if everything else appearing in these equations is known from the experiment,

pressure correlations can be obtained as the closing terms. This is the closest we

can come to in obtaining these terms from experiment, and despite the measure-

ment errors which might be present in such balances, the resulting information will

be extremely useful for the turbulence modelers. The purpose of this part of the

work reported here was to provide such balances of the Reynolds stress and heat

flux equations for the buoyant plume.

2.0.0 Work Accomplished

2.1.0 Comparison of Second Order Models in Homogeneous Flows

Before presenting the results a note about the LRR model constants used in the

present study is in order. These constants have evolved to slightly different values

than those orginally recommended by LRR 4. The value of the Rotta constant C1

(in the return to isotropy term) used in the present study is 3.6 (note that due to a

different definition of bij used here the value of CI differs by a factor of two). The
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rapid term constant C_ was assigned a value of 0.4 in the original LRR model. In

the present study the value used for this constant is 0.55 which is slightly higher

than the value of 0.5 recommended by Morris 6. It was found out that the value of

0.55 led "to improvement in the performance of LRR model in all the flows tested

here. (The improvements were slight for the irrotationally strained flows but

Figure 1 compares the development of Reynolds stresses computed using these

three models in a flow through axisymmetric contraction with the DNS data T.

Here we show a typical case of S --- 100.00 (Sko/eo = 55.73, case AXM). All

the models deviate from the DNS data. However, LRR model gives slightly better

results than the SSG model with IP model performing the worst.

Figures 2 and 3 show a similar comparison for flow through axisymmetric expan-

sion for two different strain rates. For the smaller strain rate flow (S -- 0.717, Sko/eo =

.408, case EXO) SSG model reproduces the u2development quite well while both IP

and LRR models underpredict it. For the v"-_ component all the models give similar

results. Therefore, for this low strain rate flow SSG model is better than the other

two models. For the flow with higher strain rate (S = 7.17, Sko/eo = 4.08, case

EXP) the LRR model is in excellent agreement with the DNS data for both the

components while both IP and SSG models show overprediction So for this flow

LRR model works the best.

Now we show comparisons for the distortion of turbulence by plane strain for

four cases of differing strain rates. We start from the lower strain rate case. Figure

4 compares the evolution of the three non-zero Reynolds stress com._ponents for the

flow with strain rate S = 2.6 (Sko/eo = 2.309, case PXC), For u2component all

the models underpredict the DNS data. LRR model is slightly better than the SSG

model. IP model is the worst of the three. For v 2 component IP model works the

best. LRR model slightly underpredicts v 2 while SSG overpredicts it. The third

component w 2 is overpredicted by all the models with LRR model being better than

the other two. Figure 5 shows the similar comparisons for the highest strain rate

case (S = 25.0, Sok/eo = 22.227, case PXE). All the three models underpredict the

u--2Component. IP model is the worst of the three models. LRR model_gives slightly

better result than the SSG model for this stress component. For v 2 componen____tt

LRR model is the best and SSG model is the worst of the three. For the w 2

component all the three models overpredict the DNS data with LRR mdoel being

closest to the data. From the above four plane strain flow comparisons, we note

that the performance of all the three models deteriorates as the strain rate increases.

However, on the overall LRR model works better than the other two models.

Figure 6 shows the same compariso__n with the homogeneous shear flow experiment s

(S = 46.8, Sko/eo = 6.46). For the u2component LRR _ model gives the best result

whereas SSG and IP models overpredict it. For the v 2 component also the LRR

works the best. SSG model slightly overpredicts the data where as IP model if off

by a larger margin. For the w 2 component both SSG and IP models reproduce

the data very well whereas LRR model overpredicts the data. For the shear stress

component LRR performs reasonably whereas SSG model slightly overpredicts the

data and IP model is off the data by a higher margin. So, for this experiment, LRR
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model has better overall performance than the other two models.

Last, we discuss the evolution of q2 for the case of rotating homogeneous shear

flow. Since no experimental or DNS data is available for this flow the comparisons

will be made (for two cases) with the LES 9. Bardina 1° pointed out that in this

case we should be careful in interpreting the comparisons for anything more than

the trends shown by the LES. In aii the Cases shown here the initial conditions

corresponded to isotropic turbulence with eo/Sko = 0.296. Figure 7 shows the

comparisons for the three cases of different Rosby numbers (= _/S). For _/._S - .25

we note that all three models significantly underpredict the LES results for q2 ; SSG

being closest to the LES data and the LRP_ being the furthest. Qualitatively all

the three models reproduce the LES trends. For the case of _2/8 = 0.50 SSG is in

excellent agreement with the LES results. Both IP and LRR give identical results

and give a smaller value of q-2 than the LES. It should be pointed out that SSG

model constants were partially calibrated against this flow. For the third case of

ft/S = 1.0, all the three models give identical results. Since no LES results are

available for this case the only purpose of showing the results is to see how the

three models compare with each other.

2.1.2 Conclusions

Results were shown from numerical computation of various homogeneous turbu-

lent flows using three different turbulence models. All of these models use a linear

(or quasi-linear) model for the rapid part of the pressure strain model. Based on

their overall performance it is found that LRR model works better than both SSG

and IP models. For the irrotationally flows the differences between the models and

DNS data increased with the strain rate with LRR model performing better than

the other two models. For the simple homogeneous shear flow LRR model better

than the SSG model (for the DNS both performed equally good but for the exper-

iment LRR worked better). For the homogeneous shear flows both SSG and LRR

model showed trends similar to those shown by LES with SSG performing better

than the LRR model. It is Worth noting that SSG model has seven empirical con-

stants as compared to two in LRR model and on the overall it still does not perform

better than LRR model. Part of the reason for this may be due to the fact that

the SSG model does not satisfy the normalization constraint where as LRR model

does. (Normalization is an exact property of the pressure strain correlation; see

references 4 and 11 for details.) As has been pointed out by Shih and Lumley s, for

a model of the rapid pressure strain part which is linear in the anisotropic tensor

and satisfies all of its exact properties, L1LR is the most general model.

2.2.0 Experimental Balances for the Second Moments for a Buoyant Plume

2.2.1 Heat Flux Budgets

The transport equation for the vertical (streamwise) heat flux can be written as

_r + az =---- r Oz
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_ow __ow - !top r)_ _,j
-- U_ 0---'_- -- _ + 9_t2 -- p_z - (v + (1)

Note that the molecular term is written in local cartesian coordinates. The balance

of this equation is shown in figure 8. Advection term is the smallest in this balance

and, therefore, contributes least to the transport of the heat flux w"t. It is clear

that in the central core of the flow.(r/z < 0.04), the production of this heat flux

maintained by the mean buoyancy gradients and the turbulent buoyancy force i.e.

the source of energy is the gravitational field. The shear production is relatively

small in this region. Then there is an intermediate region where the production

from mean velocity and gravitational field are of the same order. However, for

r/z > 0.1 (which approximately corresponds to the plume half width), most of the

production is maintained by the mean velocity and buoyancy gradients and the

turbulent buoyancy production is only a small fraction of these two. The closing

term in the heat flux balances is labelled as Hi and represents the sum of the pressure

correlation and the molecular destruction terms i.e.

= !top _ (_,+ _--ou'otHi p Oz_ r)_zj oz_
(2)

The molecular term in (2) is thought to get weaker with increasing Reynolds and

Peclet numbers, eventually approaching a value of zero in the limit of local (small

scale) isotropy. This term was not measured and, therefore, its magnitude relative

to others can not be established. However, in turbulence modeling, it is customary

to combine this term with the pressure correlation term s and, therefore, from that

point of view not knowing each term separately does not reduce the usefulness of

these budgets. Notice that the shape of this term is very similar to the shape of the

heat flux w--t and its magnitude remains large throughout the flow field.

The equation for the radial heat flux is

= - - (r_-_)- (_7)- u_ u---_9--7-_r + Oz r

_ _ou _ _ou _t°P _ (_ + r)_,j (3)

The balance of this equation is shown in figure 9. Again, we note that the advection

term is quite small as compared to the other dominant terms in the equation. Unlike

the w't heat flux balance, the shear production is extremely Small here. This is

because the gradients of mean radial velocity are much smaller than the gradients in

the mean vertical (streamwise) velocity. There is no turbulent buoyancy production

in this equation and all the production is due to the mean buoyancy gradients. We

note that the term representing sum of the pressure correlation and the molecular

destruction makes up a substantial part of the budget and its shape is similar to

the radial heat flux. We also note that this budget can not be divided into any

subregions, where some phenomenon are more dominant than others, because the

relative magnitude of each of the terms in equation (3) remains the same across the

flow field.
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2.2.2 Reynolds Stress Budgets

The transport equation for the Reynolds stress, within Bussinesq approximation,

is

(4)-

where the viscous diffusion term has been neglected since it will be small as com-

pared to the turbulent diffusion.

For reasons of convenience, turbulence modelers do not model the pressure cor-

relation term in the form as it appears in the above equation but re-write it in a

different form by separating it into a deviatoric and a non-deviatoric part. Two

ways of doing this have been suggested in the literature and we will look at both of

these before deciding which one to use in the present study. The traxiitional way of

writing this term is 4

(s)

where the first term on the right hand side is the deviatoric part. The second term

is the so called pressure diffusion term. Lumley 1: (1975) has instead suggested the

following separation

r] 2 1 2

op J op

where the term in the square brackets is the deviatoric part and the last term on

the right hand side is the pressure diffusion term. Regardless of which separation is

employed a correction or model has to be used for the correlation p-'_.. The model

used here is due to Lumley 8 is given by _ = -q_u_/5. This study indicates that

the use of this model with (5) produces so much pressure diffusion that it negates

the velocity diffusion (i.e. due to uiuf_.). On this basis it was concluded to use the

separation given by (6) in the present study. (For further details see Shabbir13).

Therefore, using (6) the equation for the Reynolds stress can be re-written as

Uk (u--7_),k =- ['u_ujuk + _p (_-U-_)_iij],k

{ 1 2+
2 2

- 2v'u_,_ui,1, + -3eaSt - -_e_fij

- uj, + v ,k) - Zf -fi-

(7)

where e = ei_. Note that anisotropic part of the dissipation part has been combined

with the pressure correlation term 11. The term in the curly parenthesis has a zero

trace and will be denoted by _ij in the rest of the paper. It is this term whose models
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6

have been proposed. Note that the above equation is exact since no approximations

have been used SO far. Now we introduce the model for the pressure diffusion term,

as given above, and with this approximation the above equation becomes

2 (q2uk)6_j]_

2
(8)

Note that due to the model for the pressure diffusion term this is no longer an exact

equation and _ has been used to emphasize this fact. It is this equation which will

be balanced out vdth the experimental data and the term @ij will be obtained as

the closing term. It should be reminded that in addition to the measurement errors,

any uncertainty in the approximation of the pressure diffusion will also be lumped

into ¢ij.

The equation for the streamwise Reynolds stress w 2 is given by

m

Or' + Oz

(9)

The balance of this equation is shown in figure 10. Advection is the smallest of

all the terms. Diffusion term is a gain near the center of the plume and a loss

in the rest of the flow. Also, its magnitude near the center is comparable to the

other dominant terms in the balance. We note that the buoyancy production is

comparable to the production due to mean velocity gradients near the plume center

but over the rest of the flow field the shear production is much larger than the

buoyancy production. It is also interesting to note that the buoyancy production

and dissipation rate approximately balance each other. The closing term in this

balance is _zz and represents the sum of the pressure correlation term and the

anisotropic part of the dissipation. This term is a loss for the u 2 budget and we

note that beyond r/z = 0.08 this term and shear production approximately balance

each other.

The equation for the radial component u _ is given by

Or + Oz _ ----

1 0 O 2 1 c9 _ 0

r 0r

(10)

m

and its balance is shown in__figure 11. Obviously the advection of u 2 has the same

form as the advection of w 2. The production due to velocity gradients is a loss

near the plume center and is a gain after about r/z = 0.04. This is because the

radial gradient of the radial mean velocity is positive near the plume center. The
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mechanical production term is not large. The diffusion ter_ is a loss over most of

the flow field and becomes a gain toward the outer edge of the flow field. The sum

of the pressure correlation term and the anisotropic part of the dissipation rate is

obtained as the closing term in the budget and represents a gain for u s. We further

note that beyond r/z = 0.08 it approximately balances the dissipation rate.

Finally we look at the budget for the shear stress _'_ as shown in figure 12. Its

equation is given by

Or + Oz - -

_ ___0W

ou ou - ow

(11)

Both advection and the turbulent buoyancy production are of very small magnitude

and over most of the flow field these approximately balance each other. Neglecting

these two terms would not cause any significant change in the shear stress balance.

We note that the diffusion term is not negligible in this budget. The term ¢rz is

essentially balanced by the difference between the shear production and diffusion

processes. The shape of ¢_z is obviously similar to that of the shear stress and its

peak approximately corresponds to the peak in the shear production.

3. Future Plans

3.1 Turbulence Modeling (with T.-H. Shih)

(a). Compare the performance of the various non-linear second order models in

different homogeneous flows in order to find out their strengths and weakneses. This

will be an extension of the work presented in section 1 of this brief.

(b). To develop and test models for turbulent diffusion terms in the Reynolds

stress equations using Lumley's theory of third moments 11.

3.2 DNS of Bypass Transistio n (with T.-H. Shih and G. Karniadakis).

The bypass transition is an important engineering problem due to its relevence

to turbomachinery environment and, therefore, there is a considerable interest both

at LeRC and at CMOTT to study this phenomenon. We are interested in carrying

out the DNS for this problem both in order to provide a data base for the modeling

efforts of bypass transition at CMOTT and to study its physics. For the former we

are interesting in finding out what kind of global parameters, if any, are linked to

the transition process. For the later we are interested in finding out, for instance,

what is the effect of anisotropy in the free stream turbulence velocity and length

scale on the transition process.

These simulations will be designed after the experiments of Sohn and Reshotko _4

who studied the bypass transition over a flat plate with differing free stream turbu-

lence intensities. The results of DNS will be compared with these experiments.
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3.2.1 Numerical Scheme.

Currently we are exploring the possibility of using a spectral element code for its

suitability for doing such a DNS. We are inclined to use a spectral element method

because of its higher accuracy and its ease of local grid refinement.

The numerical scheme used in the code involves fractional time discretization

which results in three sets of semi discrete equations. In the first step advection term

is handled explicitly using a third order Adams-Bashforth scheme. In the second

step Poisson equation for pressure is solved implicitly and continuity is satisfied. In

the third fractional step the diffusion terms are accounted implicitly by a second

order Crank-Nicholson method.

In order to carry out the spatial discretization the flow domain is first decom-

posed into macro elements. Each of these macro elements uses a local cartesian

mesh by employing Gauss-Labatto collocation points. Then within each macro ele-

ment the flow variables are represented as tensor product of Chebychev polynomial.

These representations of the flow variables are then substituted into the governing

equations and discrete equations are obtained by applying the weighted residual

technique.

3.2.2 Test Cases to be run

Several test cases will have to be run in order to validate the code before a full

DNS can be carried out. First of these is to solve the laminar boundary layer flow

over a fiat plate in order to insure that the numerical method gives the Blasius

solution. This will also help us explore the various boundary conditions which can

be used at the top boundary and at the outflow and latter can be used for the

mean flow during the DNS. After this has been successfully accomplished the most

unstable mode disturbances based on the linear stability theory will be intorduced.

This will allow comparing their growth rates (in the linear region) with the solutions

from the linear stability theory. The third case will be that of suction and blowing

through the flat plate and the resutls will be compared with those obtained by

previous workers.
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Modeling of Turbulent Shear Flows

William W. Liou

1. Motivation and Objective

This report documents the current progress in the research and development of

modeling techniques for turbulent shear flows. These include a two-scale model for

compressible turbulent flows and a new energy transfer model. The former rep-

resents the status of our efforts to identify compressibility effects in turbulence.

The energy transfer model refines a weakly nonlinear wave model developed ear-

lier, which models directly the turbulent large structures. The objective of these

activities is to develop second-order closures for compressible turbulent flows.

2. Work Accomplished

2.1 A Two-Scale Model for Compressible Turbulent Flows

"Numerical simulations of 2D and 3D compressible turbulence have shown tha.t

the existence of shocldet structures and the energy transfer mechanism between

the kinetic energy and the thermal-energy are the two important compressibility

effects 1,2,a,4. These compressibility effects are incorporated into a new two-scale

model. The model is based on the proposition that the effect of compressibility in

turbulence is mainly on the energetic large eddies in turbulent shear flows. The small

eddies are affected only indirectly through the increased spectral energy transfer.

The development of the model and some results of its application to compressible

free shear layers are briefly described here. A more detailed analysis is included in

a NASA TM 5.

Firstly, it is assumed that the shocklet structures that may occur intermittently

in compressible turbulent flows are formed mainly by the collision of the energetic

turbulent eddies of large scale. The small eddies, which contain much less energy,

are less efficient in the formation of shocklet structures when they collide with

other eddies. Thus, the eddy shocklets scale with the energy containing eddies

and have more direct influence on the evolution of the large eddies than on the

smaller ones. The large vortical structures are intensified as they pass through the

shocklet. This process, in other words, enhances the vortex stretching mechanism

and increases the spectral energy transfer. In addition to the usual route of the

vortex stretching mechanism that has already been enhanced, the small eddies may

be generated directly from the passage of the large vortical structures through shock

waves These processes of enhanced energy transfer may then cause the spectrum

to depart from equilibrium. Another mechanism that may also contribute to the

non-equilibrium spectrum or the creation of vorticity is strongly related to the

pressure fluctuation. It has been sllo wn by Kida and Orszag a and Lee et al. _,

among others, that substantial vorticity is created by the baroclinic terms. The

creation of vorticity, however, occurs mainly at the shock wave.
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Based on the picture described above, the effect of compressibility in turbulence

is mainly on the energy containing large eddies or the low wavenumber fluctuations.

The large eddies respond more readily to changes in the compressible mean flow

resulting from either high speed or combustion. The straining of the large eddies due

to compressibility effects increases the spectral energy transfer to the small scales

through the mechanism of vortex stretching and direct generation. The smaller

scales, on the other hand, are only indirectly affected by compressibility. The energy

contained in the small scales in the high wavenumber part of the energy spectrum

is increased only as more energy is pumped in from the large eddies associated with

the low wavenumber part of the spectrum. To model the Favre-averaged mean

compressible turbulent quantities associated with these two distinct regimes in the

energy spectrum we solve the modeled transport equations for the kinetic energy

of the large eddy (kp) and the small eddy (kt) and the rate of energy transfer from

the large eddy to the small eddy (ep) and the rate of energy dissipation (et). The

transport equations are

d ..)dkS. __
_-_--= dy[(_+_-_p --_-y ] + #T(-_y) -- pep + P.D. (1)

__ d _r d_ - _ .a_.2 _2
p-_--/- _[(z + gz-)-_-v] + - (2)

__£ d uT)d£.p_- = _[(_ + + -- - -- (3)

_ _2

_D_ d #r)dU,] + Ctl._e_p _et= -- ct_p= (4)
P-_ dv [(_ + at, dv kt k,

P.D. and E.S. denote the effects of pressure-dilatation and eddy shocklets, respec-

tively. The definition of the model constants can be found in the NASA TM. The

present two-scale model for compressible turbulence is built upon a parallel model

for incompressible flows, Duncan et al. °. Models for the terms responsible for the

compressibility effects are needed to close the equations. In this analysis, we have

adopted Sarkar's 7 model for the pressure-dilatation terms. To model the effects of

the increased spectral energy transfer due to compressibility, a simple model has

been constructed through dimensional reasoning. Its coefficient has a M_ depen-

dence, similar to the dilatation dissipation model proposed by Zeman s and Sarkar

et alP. The compressibility corrections that they proposed have been implemented

successfully into k - e models, Viegas and Rubesin l°, into k - w models, Wilcox xl

and into second-order closure models, Speziale and Sarkar x2.

Fig. 1 shows the variation of the vorticity thickness growth rate, dl_,,/dx, as a

function of convective Mach number. The vorticity thickness, 6_,, is defined by

_ = vs-u, (5)
(dU/dy)maz"
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The convective Mach number is defined as the ratio of the average convective

velocity of the dominant large scale structures, relative to the free stream, to the free

stream speeds of sound, Papamoschou and Roshko 13. The convective Mach number

has been shown to be an appropriate parameter to correlate experimental data and

to identify the effects of compressibility. The vorticity thickness growth rates for

compressible free shear flows, (d_,,,/dx)(Me, U,/U!,p,/pf), have been normalized

by the corresponding values for incompressible flows, (d_/dx)i(0, U,/UI,p,/pl),

and are presented in Fig. 1. The value of (dS,.,/dz)i is obtained by using a relation,

Papamoschou and Roshko 13,

dS_ (l_l_t)(1 +(u.)l/2).p,. ,

~ 1+ (,,.u e_)m (6)

The constant of proportionality is obtained by the present model calculations per-

formed in the limit of Me _ 0. Measured data are denoted by open symbols in Fig.

1. Without the compressibility corrections, the current two-scale model and the

two-scale model developed by Kim and Chen i4 (KC) predict a large reduction of

the growth rate only at very high convective Mach numbers. With the inclusion of

the effects of eddy shocklets and the pressure work, the current compressible two-

scale model predicts a smooth reduction of the vorticity thickness growth rate as

the convective Mach number increases. The calculated growth rate curve levels off

at high convective Math numbers. It should be noted that in the present analysis

the convective Mach number of the shear layer is increased by increasing the Mach

number of the high speed stream. According to the definition of the convective

Mach number, there exists a maximum convective Mach number for a plane mixing

layer of the same fluid with matched total temperature. That is,

1--ram Mc =
)I/5

where r =.Us/U.¢ and 9' denotes the ratio of the specific heats of the working fluid.

For a value of R=0.1, the limiting convective Mach number for a plane shear layer

of air is about 2.0.

Since it is the Reynolds shear stress that appears in the mean momentum equa-

tions and influences directly the development of the mean flow, it is interesting to

see how its peak value varies as a function of Me. Note that in the current analysis,

the Reynolds shear stress is related to the mean flow by a turbulent eddy viscosity,

pt. That is,

and

= (s)
oy
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In Fig. 2, the peak Reynolds shear stresses predicted by the present compressible

two-scale model are compared with measured data, Elliott and Samimy Is. The

predictions of the present model, without compressibility corrections and of the
KC model are also shown for comparison. The results show that, without the

inclusion of some forms of compressibility corrections, none of the two-scale models

tested, including the current model and the KC model, performs satisfactorily in the

calculations of compressible free shear layers. The present compressible two-scale

model under-predicts the absolute value of the peak Reynolds shear stress. However,

the trend observed in the experiment that the level of the peak Reynolds shear stress

decreases with increasing convective Mach number is picked up consistently by the

current compressible two-scale model. Note that the Reynolds shear stress has

been normalized by the square of the velocity difference of the two free streams.

The model also shows that the value of the peak Reynolds shear stress appears to be

independent of the velocity ratio of the free streams. In fact, the predicted variation

of the peak value of the Reynolds shear stress as a function of the convective Mach

number is similar to the predicted variation of the normalized vorticity thickness

growth rate as a function of the convective Mach number. This characteristic of

the present compressible two-scale model is consistent with the observation made

by Elliott and Samimy 15. They argue that, based on an integral analysis, the

decreasing trend of the level of the Reynolds shear stress, as the convective Mach

number is increased, is due mainly to the decrease of momentum thickness growth

rate. However, the two speed ratios considered here, 0.1 and 0.2, are nearly equal

to each other. Cases with a wider range of operating conditions, such as the speed

ratios and the working fluids, need to be examined before any conclusive statement

can be made.

To further validate the present compressible two-scale model, it is applied to the

compressible free shear layer corresponding to the Case 1 in Samimy and Elliott 16.

In this case, a fully expanded plane shear layer of air with M_ = 0.51 and r = 0.36 is

examined. The calculated mean profile shown in Fig. 3 agrees reasonably well with

the measurement. As described previously, there are many possible causes for the

small difference in the outer region of the mixing zone. Fig. 4 shows the comparison

of the computed and the measured Reynolds shear stress. The present two-scale

model under-predicts the peak Reynolds shear stress by about 12%. The profile of

the Reynolds shear shear stress, however, agree very well with the measurement.

2.2 A New Energy Transfer Model for Turbulent Free Shear Flows

The model is built upon the weakly nonlinear wave models developed by Liou

and Morris 17. The development of the energy transfer model and some results of

its application to an incompressible free shear layer are briefly described here. A

more detailed analysis is included in a NASA TM is.

The random flow properties are split into three components,

], = F, + /, + /_ (10)

The fluctuation with respect to the long time-average component, Fi, is separated

into a component representing the large-scale motion, fi, and one representing
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the residual fluctuations, f_. The long time-average of tl/e instantaneous value

is denoted by an overbar,

- 1 ]0]i- Fi - % ]idt (11)

For the large-scale fluctuation, a separable form of solution is assumed,

{u,v,p} = A(x)[_(_),_(_),_(y)]e_p[i(a_-_t)]. (12)

The bold facequantitiesdenote a complex solutionwhose realpart describesthe

physicalpropertiesof the large-scalestructures,a (= a,.+ iai)denotes a complex

wavenumber and w the frequency.The governingequationsforthe localdistribu-

tionsof the largestructurescan be reduced to the Rayleigh equation in terms of

d_ d2U
{( _u - _ )( _ _2 ) _ %____y__ _ = 0 (13)

The amplitude, A(x), appears as a parameter in the local calculation for the _, _),i6

and is determined separately from the large scale turbulent kinetic energy equation,

v#_ _ov_ o (uj-'-_+ P_--_)= -uiuj Oxj Oxj

• Oui

- (- < _ >jy_j

0

- vqx-'-j(ui < u_u_ >) + viscous terms (14)

where k = ½u-T_. k denotes the turbulent kinetic energy of the large-scale struc-
ture. Note that in this analysis k denotes the turbulent kinetic energy of large

scale structure of a single mode. The kp defined in the first part of this report

represents the sum of the turbulent kinetic energy of all the modes in the entire

large-scale spectrum. <> represents a short time-average with an average inter-

val much smaller than T1 but much larger than the characteristic time scale of the

background small-scale fluctuation, strange and Crighton _9. The interaction terms,

the third expression on the right hand side of equation (14), describe the transfer

of large-scale energy, presumably, to the small scales where energy is eventually

dissipated by viscosity. The detailed analysis of the weakly nonlinear wave models

and the numerical solution procedure used here can be found in Liou and Morris_L

The spectral energy transfer results from the interactions between turbulent fluc-

tuations of different scales. For the weakly nonlinear wave turbulence models, the

energy transfer is of crucial importance in the determination of the wave ampli-

tude and needs to be considered carefully. Very little information, experimental or
! !

theoretical, is available regarding the stresses, - < uiu j >.
The weakly nonlinear analysis seeks normal mode solution ofthe large-scale tur-

bulent fluctuation. Locally, the fluctuations are described by the linearized Euler
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equations. On the other hand, the spatial extent of each of the mocles of the large-

scale structures could be regarded as being determined by the wavenumber, at.

Therefore, the proposition here is to estimate the characteristic size of the large

scales as the wavelength associated with the large structures, which are predicted

by the weakly nonlinear analysis. That is,

I " I_ = 2____r. (15)
_r

where l_ denotes the wavelength. Through dimensional reasoning, the enregy trans-

fer can be modeled by
kJ

C'2 i-_ (16)

This is the proposed model for the energy transfer from the large scale to the small

scale. This estimate is in accord with the classic assumption of turbulence theory

that dissipation ".. proceeds at a rate dictated by the inviscid inertia behavior of

the large eddies", Tennekes and Lumley 2o. Computationally, since the wavenumber

is already a part of the solution of the equations for the large-scale fluctuation, this

model involves no extra efforts in estimating the characteristic size of the energy

containing large scales. This rather simple model provides a closure to the equations

for the large-scale structure, thereby allowing render the weakly nonlinear wave

description of the large-scale structure to be self-contained. This self-contained

nature of the weakly nonlinear wave turbulence models may be important in the

future applications to other turbulent free shear flows.

The model is tested against an incompressible plane mixing layer. Since the most"

unstable mode interacts most strongly with the mean flow 17, the most amplifying

local instability is used in the modeling of the average, overall interactions between

the mean and the large scale motions. Therefore, in the present formulation, the

characteristic length scale l_v is determined only by the locally most unstable modes.

Fig. 5 shows the predicted evolution of the streamwise mean velocity profiles

with axial distance. 7/is a similarity coordinate,

• Y - Yl/2
_/ = (17)

2 -- 2 0

where YlI2 denotes the location where the local mean velocity is one half of the free

stream velocity. The predicted self-similar profiles agree well with that compiled

by Pate121 except at the low speed edge of the layer. Similar differences were also

observed by Liou and Morris lz. They attributed this difference to the single mode

representation of the entire large scale spectrum and the uncertainties in the mea-

surements in this region resulting from the local large changes in the instantaneous

flow direction.

The streamwise evolution of the amplitude of the large-scale structures is shown

in Fig. 6. After a region of establishment, the amplitude reaches a saturated value.
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In this region, the rate of the production of the large-scale tfirbulent kinetic energy

from the mean flow is balanced by the rate of energy transfer from the large scales

to the small scales. Note that, for the present energy transfer model, the amplitude

equation becomes,

dA 2 A 2 A s
d-"x" = G3(z) - G,(x) (18)

G3 and (74 denote the normalized positive definite integrals of the production terms

and interaction terms across the layer, respectively. The critical points of the nonlin-

ear equation (18), where dA2/dx = O, are A1 = 0 and G4(zz)Az = G3(x2). Simple

analyses by applying the Liapunov function method 22 show that A1 is an unstable

critical point. Any small disturbances to A1, say AI would grow exponentially. In

fact,

(AI)' e (19)

A2, on the other hand, is asymptotically stable. A disturbance about the As, say

A_, would decay exponentially,

(A2), _ e-_9- x (20)

The saturated value of the amplitude, As, is an asymptotically equilibrium value.

It indicates an asymptotically equilibrium state of the large-scale structures. The

simple instability analyses also show that any deviation away from this equilibrium

state would be damped out exponentially. Consequently, the saturation of the wave

amplitude may provide an indication of the the self-similarity of the flow in terms

of the development of the large-scale structures.

3. Future Plans

3.1 A Two-Scale Model for Compressible Turbulent Flows

(1) Extend the two-scale model to wall-bounded flows.

(2) Continue the development of second-order closure models that account explic-

itly for the compressibility effects identified during the development of the two-scale

eddy-viscosity model.

3.2 A New Energy Transfer Model for Turbulent Free Shear Flows

(1) Apply the weakly nonlinear wave model to compressible mixing layers to

investigate the effects of compressibility on the characteristics of the coherent large-
scale structures.
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Figure 1. Variation of relative growth rate with convective Mach number, r = 0.1. _ _,

Present: without compressibility corrections; _ , Present: with compressibility
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Center for Modeling of Turbulence and Transition
Research Briefs - 1991 N93-15798

Modeling of Near Wall Turbulence
and Modeling of Bypass Transition

Z. Yang

1. Motivation and Objective

1) Modeling of the near wall turbulence. We aim to develop a second order clo-

sure for near wall turbulence. As a first step of this project, we try to develop a

k - e model for near wall turbulence. We require the resulting model to be able to

handle both near wall turbulence and turbulent flows away from the wall, compu-

tationally robust, and applicable for complex flow situations, flow with separation,

for example.

2) Modeling of the bypass transition. We aim to develop a bypass transition

model which contains the effect of intermittency. Thus, the model can be used

for both the transitional boundary layers and the turbulent boundary layers. We

require the resulting model to give a good prediction of momentum and heat transfer

within the transitional boundary and a good prediction of the effect of freestream

turbulence on transitional boundary layers.

2. Work Accomplished

In the past year, progress has been made in both topics mentioned above (i.e.,

modeling of the near wall turbulence and modeling of the bypass transition). In the

paragraphs below, these two topics will be reported separately.

2.1 Modeling of Near Wall Turbulence

Because of the wide range of scales involved in a turbulent flow, DNS (direct

numerical simulation) is limited to flows of moderate Reynolds number and simple

geometry. Turbulence modeling is the only viable approach for the calculation of

turbulent flows of engineering interest. In turbulence modeling, the k-e model is the

most widely used model in engineering calculations. The Standard k - e Model 1,2

was devised for high Reynolds number turbulent flows and is traditionally used

in conjunction with a wall function when it is applied to wall bounded turbulent

flows. However universal wall functions do not exist in complex flows and it is thus

necessary to develop a form of k - e model equations which can be integrated down
to the wall.

Jones and Launder 3 were the first to propose a low Reynolds number k - e model

for near wall turbulence, which was then followed by a number of similar k - •

models. A critical evaluation of the pre-1985models was made by Patel et al.4. More

recently proposed models can be found in Shih 5 and Lang and Shih 6. Three major

deficiencies can be pointed out about existing k-e models. (Some of the models may

have only one or two of the three deficiencies.) First, a near wall pseudo-dissipation

rate was introduced to remove the singularity in the dissipation equation at the
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wall. The definition of the near wall pseudo-dissipation rate was quite arbitrary.

Second, the model constants were different from those of the Standard k - e Model,

making the near wall models less capable of handling flows containing both high

Reynolds number turbulence and near wall turbulence, which often occurs for real

flow situations. Patel et al. 4 put as the first criterion the ability of the near wall

models to predict turbulent free shear flows. Third, the variable y+ is used in the

damping function /_, of the eddy viscosity formula. Since the definition of y+

involves u,, the friction velocity, any model containing y+ cannot be used in flows

with separation.

Effort is made to propose a new k- e model for near turbulence which is free of the

three deficiencies mentioned above. In this model, k 1/2 is chosen as the turbulent

velocity scale. The time scale is bounded from below by the Kolmogorov time scale.

The dissipation equation is reformulated using this time scale and no singularity

exists at the wall. Thus, it is no longer necessary to introduce the near wall pseudo-

dissipation rate. The model constants used are the same as in the Standard k-e

Model. Thus, the proposed model will be also suitable for flows away from the wall.

An earlier version of the model, which contains y+ in the damping function, was

proposed and reported in Yang and Shih 7. The model is now improved by using

P_ = kX/2y/v instead of y+ in the damping function. Hence, the present model can

be used for flows with separation.

In the present model, the eddy viscosity is given by

Ur =cuft, kT (1)

where the time scale T is written as

T = k + v)i/2" (2)

The first part is the time scale conventionally used for high Reynolds number tur-

bulent flows and the second part is the Kolmogorov time scale. Away from the wall,

the first part is much large than the second part while near the wall the second part

dominates, giving the Kolmogorov time scale as the turbulent time scale at the wall.

The time scale given is bounded from below by the Kolmogorov time scale-and is

always positive.

The damping function fu is given by

(3)"

where a_ - 1.5 x 10 -4, a3 - 5.0 x 10 -7, a5 = 1.0 x 10 -1°. The damping function

is chosen such that the shear stress has the correct near wall asymptotic behavior.

Away from the wall, fu approaches one as required.

The modeled transport equations for k and e are

],.+ Ujk.j= [(,.,+ ,.'r)kj].j- < > U ,j-
O"k

(4)
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+ u, .j = [(. + + (-c,. < u uj > v ,j - C2.e)/T + (5)

Because T is always positive, the dissipation rate equation does not have a singu-

larity at the wall.

Turbulent channel flows and flat plate boundary layer flows at different Reynolds

numbers were calculated using the proposed model. The mean velocity, turbu-

lent kinetic energy, turbulent shear stress and turbulent dissipation rate for tur-

bulent channel flow at Re, = 395 and turbulent flat plate boundary layer flow at

Reo = 1410 are shown in Fig 1 and Fig 2, respectively. DNS data for these cases

are shown for comparison. Also shown are the predictions using the Jones-Launder

model and the k - e model proposed by Chien s. These two models are chosen

because the Jones-Launder model is the first k - e model for near wall turbulence

while Chien's model is known to perform quite well for turbulent boundary layer

flows. Overall, the proposed model is found to give a better prediction. Calcula-

tions were also made for turbulent flat plate boundary layers at larger Reynolds

numbers, turbulent boundary layers with pressure gradient (favorable pressure gra-

dient, adverse pressure gradient, and increasingly adverse pressure.) The results of

these computation and the comparisons with the available experimental data can

be found in Yang and Shih 9.

2.2 Modeling of Bypass Transition

In a quiescent environment, transition is preceeded by the amplification of ToUmien-

Schlichting waves. These waves eventually break down, giving rise to turbulent

spots, which can be viewed as the onset of transition. In an environment with high

freestream turbulence, say the flow passing over a turbine blade, turbulent spots

are formed due to the transport of turbulence from the freestream to the boundary

layer rather than the T-S wave amplification. This type of transition is called bypass

transition. Accurate prediction of bypass transitional boundary layers is very im-

portant for internal fluid mechanics because a significant proportion of the turbine

blade is in the a transitional boundary layer region. Furthermore, the performance

and the life of a turbine are directly related to the peak vales of the momentum and

heat transfer both of which occur in the transitional boundary layer.

Priddin 1° was the first to notice that the low Reynolds number two equation

models have the potential to predict transitional flows under the influence of the

freestream turbulence. This is probably due to the fact that the generation of

turbulent spots in a boundary layer is a random process and the flow is almost

fully developed turbulent within a turbulent spot. A detailed calculation procedure

was given by Rodi and Scheuerer I1, in which the Lain & Bremhorst low Reynolds

number k - e model was used. More recently, a comparative study of the perfor-

mance of existing low Reynolds number k- e models in predicting laminar-turbulent

transition was made by Fujisawa 12.

While the low Reynolds number k - e models could mimic transition, the quan-

titative predictions do not compare very well with the experimental data. This is

due to the fact that all these low Reynolds number k - e models were originally

proposed for fully developed turbulent flows and did not take into consideration the
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distinct feature of a transitional boundary layer - intermittency. The intermittency

of a transitional boundary layer is measured by the intermittency factor which can

be viewed as the percentage time a transitional boundary layer is in the turbulent

state due to the passing of a turbulent spot.

We propose a model for the calculation of transitional boundary layers, which

takes the effect of intermittency into consideration. The model is based on the k - e

model for near wall turbulence we have stated above. The effect of intermittency

is introduced through the following argument: since the percentage of time that a

transitional boundary layer is turbulent is measured by the intermittency factor,

a model for transitional boundary layers could be constructed from a model for

turbulent boundary layers by multiplying all the terms due to turbulence mechanism

by a weighting factor 7, which is linearly related to the intermittency factor. Thus,

the governing equations for the flat plate transitional boundary layers are, after

using the boundary layer approximation and the eddy viscosity assumption,

OU OV

o-7+ oy 0, (6)

uOV vOV o[ ou]ox + oy = _ (_'+'yvT)_ ,

U Vgk V COk 0 [ VT _ Ok ] OU 2

(7)

(s)

_+v_y = _ (.+ _j_j +_ c,.-r(-ff_y) -c2._ _ +_--r(_-_y), (9)

where x, y are the coordinates along and normal to the plate and U, V are the mean

velocities in the x, y directions, respectively.

In order to close the above equations, an expression for the weighting factor -y

is needed. The weighting factor is assumed to be related to both the freestream

turbulent level and the intermittency factor of the boundary layer. The intermit-

tency factor is assumed to be determined by the local state of the boundary layer.

We use H, the shape factor, to characterize the local state of the boundary layer

since both the intermittency factor and the shape factor change monotonically from

the laminar boundary layer to the turbulent boundary layer. Experimental results

by Abu-Ghannam and Shaw la are used as a guide to construct this function. The

weighting factor is also assumed to change in the y direction in such a way that

outside the boundary layer, the weighting factor is one since the freestream is gov-

erned by decaying turbulence. The final expression for the weighting factor is given

in Yang and Shih 14.

The above system of parabolic equations need to be supplymented by boundary

conditions at the wall and at the freestream and by initial conditions at the starting

point of the calculation. At the wall

U=V=k=O,
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2 .cgk /2.2 (I0)

The boundary condition for e was obtained by applying the equation for turbulent

kinetic energy down to the wall.

At the edge of the boundary layer, the flow variables are given by the freestream

values, i.e.

U = Ue, k =k_, e = _e- (11)

The k,, e_ in the above are found from the transport equations for k and e, with

the condition that the gradient of the flow variables in the y direction vanishes as

the free stream is approached. Thus,

dk, (12)Ue dz - ee,

vedE, (13)= T

k_o and _o (the values of k_ and e_ at the leading edge, for example) are needed.

k¢0 is obtained from the experiment, and eeo is determined in such a way that the

resulting k_(x) profile agrees with the experiment.

One of the issues in the calculation of transitional boundary layers through the

low Reynolds number k - e models is the prescription of the initial profiles for

the turbulence kinetic energy and its dissipation rate, the later of which could not

be found from the experiment directly. An expression for the initial profiles were

given in Rodi and Scheuerer 11. However, computations by Yang and Shih 15 which

tested the effect of the initial conditions on the transition prediction found, in

agreement with the findings of Patankar and Schmit 16, that the predicted onset of

the transition is sensitive to the initial profiles. This sensitivity of the results to the

initial conditions suggests that the only place where the initial conditions could be

specified unambiguously is at the leading edge. At the leading edge, the turbulent

kinetic energy and its dissipation rate take constant profiles, the values of which are

determined by the law for the decaying turbulence.

With the initial conditions given at the leading edge and the boundary conditions

given above, the solutions are marched downstream. Flat plate boundary layers with

free stream turbulence levels of 3% (Case T3A) and 6% (Case T3B) respectively

were calculated using the present nmdel. These are the benchmark cases in an

ongoing project coordinated by Saviil ir, testing the capability of turbulence models

in predicting transitional flows. Fig. 3 shows the variation of skin friction coefficient

cf against Re_. Results from the experiment is shown for comparison. In addition,

the prediction of the Launder-Sharma model is also shown in the figure because it

was reported that among the lower Reynolds number k - e models, the Launder-

Sharma model performs best for transitionalboundary layers. It is clear that the

present model gives a better prediction. Other features in the transitional boundary

layers and the calculations of the transitional boundary layers with other levels of

freestream turbulence can be found in Ref. 14.
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3. Future Plans

1) Modeling of the near wall turbulence.

The proposed k- e model is only tested for simple parabolic flows so far. Because

of the form of the model equations, the proposed model can be used in complex

flow situations, flow with separation for example. The performance of the proposed

model in those situations will be tested.

We will work on the second order closure for near wall turbulence. In particular,

we will be looking at the effect of the mean flow inhomogeneity on the pressure

strain correlation. We are hoping to represent this effect rationally, so that the

ad hoc damping functions currently being used in all the near wall second order

closures can be avoided.

2) Modeling of bypass transition.

We will apply the proposed model to transitional boundary layers with pressure

gradient and curvature. We will also extend the model to thermal boundary layers.
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1. Motivation and Objective

The primary objective of the Center for Modelling of Turbulence and Transition

(CMOTT) is to further the understanding of turbulence theory for engifieering

applications. One important foundation for this research is the establishment of

a data base encompassing the multitude of existing models as well as newly proposed

ideas. The research effort described in the next few pages is a precursor to an extended

survey of two equation turbulence models in the presence of a separated shear layer.

Recently, several authors" have examined the performance of two equation models

in the context of the backward facing step flow. Conflicting results, however, demand

that further attention is necessary to properly understand the behavior and limita-

tions of this popular technique, especially the low Reynolds number formulations.

The objective of this research is to validate an incompressible Navier Stokes code

for use as a numerical test-bed. In turn, this code will be used for analyzing, the

performance of several two equation models.

2. Work Accomplished

To date, the validation of the incompressible code DTNS is complete. The details

of this validation study are documented in reference[l]. The code is based upon

the pseudo-compressibility technique and incorporates the approximate factorization

scheme for time integration. Two laminar benchmark flows are used to measure the

performance and implementation of the numerical methods. The classic solution of

the Blasius boundary layer is used for validating the flat plate flow, while experimental

data is incorporated in the validation of backward facing step flow.

An initial result for the standard high Reynolds number k-e equations has also been

calculated to demonstrate an initial performance level of the solution technique for

the turbulence equations.

2.1 Numerical Method

The absence of a variable density in the continuity equation governing incompress-

ible flow complicates the numerical integration procedure. One solution technique

that has been well received is that of pseudo-compressibility. This idea was first

put forward by Cborin[2} and enables the equations to be solved using the prim-

itive variables. Recently, Chang and Kwak[3], Rizzi and Eriksson[4], Kwak and

Chakravarthy[5], Michelassi and Shih[6], and Turkel[7] have found this method suit-

able for resolving incompressible flow. This particular implementation has been vali-

dated by Gorski[8-10] for several different benchmark flows.
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Examine the system of equations involved in the pseudo compressibility method

and notice that they differ from the incompressible Navier Stokes equations by the

addition of a time dependant pressure term in the continuity equation.

1 oqp Ou 0%

/sat +_+N =°

0"-7 cOz\ +P Re0_x +_yy uv Re0-'yy =0 (1)

100o-7+ uv Re_ +or\ +P p_ =0

Here, x and Y are the independent variables and Re refers to the Reynolds number.

The constant /5 is known as the pseudo compressibility parameter. This system

is hyperbolic in nature while the incompressible flow equations are elliptic. The

pseudo sound speed, c = V/_ +/5, is governed by the value of the parameter/5,

whereas the physical sound speed is infinite. Chang and Kwak [3] have shown that

for/5 > 0 the finite speed pseudo waves vanish as time progresses and yield the proper

incompressible solution at the steady state limit. It is through this parameter/5 that

the convective and acoustic waves are decoupled, and thus convergence is governed. In

choosing an optimum value for this parameter, the goal is to avoid giving the viscous

effects time to react to the passing of the nonphysical transient pressure waves. Thus

a lower bound on the acoustic speeds translates into a louver bound on/5. However,

an upper bound on /5 is strictly scheme dependent.

The approximate factorization is rather straight forward. Equations (2) can be

rewritten as

_(q) + _(fl+gl) + _v(f2+g2) = 0

u ivq= , h = u2+P , f2 = uv

tlV v2 + P (2)

or in generalized coordinates (_(x, y), 7/(x, y)) as seen here in equation (3).

0_1 0 -- _+_) 0_-_(q + _-'_ f(_'+gl) + =

q
_=-

J

_ _,fl + _yf2 _ = r/xfl + r/yfz
j , j (3)

_,gl + _vg2 -- r/_gx + _lvg2
gl = , g2 =

J J

j = 0(_,_)

0(:r. y)
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The third order accurate Chakravarthy and Osher TVD sclaeme is used to discretize

the convective terms while central differencing is used for the viscous fluxes. Thus

the approximate factorization of this method is expressed in terms of flux Jacobians
A and B as

{ V 0___.A++0+. 0-}_,+ 0f_+_i')+0f_+_)
0_ Or/ (4)

V - 0 + _ 0-

where V is the cell volume, and At = _ is the timestep. The matrices Av and By

are the viscous flux Jacobians. The interested reader is encouraged to see reference[9]

for more details.

The k-e equations are solved in a similar manner as that seen in equation 2.

Consider the standard high Reynolds number form of the transport equations of the

turbulent kinetic energy and dissipation of turbulent genetic energy as in equation

(5):

0 t _.r(ft+gt) +_-_(q ) +

.qt= , flt=
U_

:

0 " t t _ S t
_"_y(f_ +g2) =

' f_= ve

1 [ P - ere ], _ f2st C,f,P-C - ReJ

with

(5)

//t
t/k = t/+--

(6)
u_ = u + ut

and the production of turbulent genetic energy defined as shown below.

P -" Vt [2(U 2 -{-V;) -F (Uy -{-Vx) 2] (7)

Again, we can translate these equations in a manner similar to that of equation (3)

and create the following system for generalized coordinates:

This can be solved via approximate factorization as shown here in equation 9.

o(v +g)
+ +

071_-7+_ -A +-ff_- +_"_'A,,-o'eH t Aq'g'= 0_

{v- 0+_F._qB++_.qB_+ ._._lBv_o0Ht}A_i- - _.TAqtV--,

(9)
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Again, the scheme is written in terms of the turbulence flux Jacobians and the

approximate source Jacobian, H t The coemcients a and a are provided to enhance• _ rt
the diagonal dominance of the implicit method. While the convective flux terms are

linear, the linearization of the source terms is not straight forward. Furthermore, the

low Reynolds number formulation of equation 5 includes other nonlinear correction

terms in the source vector S t. The interested reader is encouraged to see the recent

paper by Michelassi and Shih[6].

2.2 Discussion

Overall the performance for laminar flow documented in reference[l] is very en-

couraging. The fiat plate results shown agree with the theoretical Blasius solution

for several different grid configurations. The laminar back facing step flow was also

well resolved both in terms of the primary recirculation zone reattachment length,

and corresponding velocity profiles as seen in figures 1 and 2. However, performance

of the two dimensional flow code drops off dramatically when the Reynolds number

corresponding to the onset'of 3D flow is exceeded. Armaly et al [11] observed this

phenomenon occur at a Reynolds number of 400, based upon the hydraulic diameter

of the inlet channel. Again, the numerical results bear this finding out.

Figure 1 Reattachment length predictions----compari_n with experiment [11]. xl, x2, and x3 are the

primary reattachment, secondary detachment, and secondary reattachment lengths, respectively.
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Figure 2 RED----389 velocity profiles----comparison with experiment [11].
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The current thrust of effort is in establishing a comparison between the standard

high Reynolds number form k-e model and a version which incorporates the low

Reynolds number corrections, such as that of Jones and Launder[12]. This model

is particularly convenient in that the damping functions are independent of the

parameter, y+. Thus, multiple walls bounding the computational domain do not need

special attention. An initial calculation using the high Reynolds number approach

agrees with the published results of Speziale and Thangam[13]. However, the Jones

and Launder model is proving to be quite challenging.

3. Future Plans

Eventually, several two equation models will be examined for their behavior in the

back facing step flow. The following is a partial list of the two equation models of

primary interest:

1. Jones and Launder

2. Chien

3. Yang and Shih

4. Shih and Lumley

The current research effort will result in an increased understanding of the need

for proper modelling of the near wall region. However, the increase in accuracy

maybe offset by an unwarranted increase in effort. Further numerical experiments

are necessary before any conclusions can be drawn.
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Renormalization Group Methods for the
Reynolds Stress Transport Equations

R. Rubinstein

1. Motivation and Objective

The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-

velocity correlation and return to isotropy terms in the Reynolds stress transport

equations. The perturbation series for the relevant correlations, evaluated to lowest

order in the e-expansion of the Yakhot-Orszag theory, are infinite series in tensor

product powers of the mean velocity gradient and its transpose. Formal lowest

order Pad_ approximations to the sums of these series produce a rapid pressure

strain model of the form proposed by Launder, Reece, and Rodi, and a return to

isotropy model of the form proposed by Rotta. "In both cases, the model constants

are computed theoretically. The predicted Reynolds stress ratios in simple shear

flows are evaluated and compared with experimental data. The possibility is dis-

cussed of deriving higher order nonlinear models by approximating the sums more

accurately.

The Yakhot-Orszag renormalization group provides a systematic procedure for de-

riving turbulence models. Typical applications have included theoretical derivation

of the universal constants of isotropic turbulence theory, such as the Kolmogorov

constant, and derivation of two equation models, again with theoretically com-

puted constants and low Reynolds number forms of the equations. Recent work

has applied this formalism to Reynolds stress modeling, previously in the form of a

nonlinear eddy viscosity representation of the Reynolds stresses, which can be used

to model the simplest normal stress effects. The present work attempts to apply

the Yakhot-Orszag formalism to Reynolds stress transport modeling.

2. Work Accomplished

The modelling of the pressure gradient-velocity correlation and return to isotropy

term in the Reynolds stress transport equation remains an area of active research. 1,2,3

Models will be derived here using the Yakhot-Orszag renormalization group 4 par-

tially along the lines of our previous work 5. The result is a model for the rapid

pressure-strain term of the form proposed by Launder, Reece and Rodi 6 (LRR) and

a model for return to isotropy of the form proposed by Rotta 7 with theoretically

computed constants in good agreement with accepted values. As is usual in inves-

tigations of this sort, the priority of Yoshizawa in deriving a pressure strain model

analytically s must be noted.

The analysis requires some new ideas in renormalization group theory recently

introduced by Yakhot et alg. As Yakhot et al 9 emphasize, the application of the

renormalization group mode elimination formalism to shear flow creates a double

perturbation series in powers of e, the parameter of the isotropic theory, and in
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powers of a dimensionless strain rate, _l = SK/e, where K denotes the turbulence

kinetic energy, e denotes the dissipation rate, and S is a measure of the mean
ov_ / ov_v_strain: in Ref. 9, S 2 = [ ov__v__+ The present analysis also leads to double

_. Om,_ Oxm I Oz,_ "

expansions of this type, with the powers S n replaced by tensors S (n) homogeneous of

degree n in the mean velocity gradient VU and its transpose. It will be convenient to

retain the terminology of Ref. 9 and call this expansion the _/-expansion; when the

distinction is pertinent, the expansion of Ref. 9 will be called a scalar _/-expansion.

The heuristic program of evaluating all scalar amplitudes to lowest order in e

has proven successful in the past: apparently, the e-expansion is an asymptotic

series with a sum given very nearly by its first term l°. Unfortunately, there is no

analogous basis for truncating the _/-expansion. There are fundamental reasons for

this distinction between these expansions. The present 7/-expansion is tensorial:

successively higher order terms do not introduce merely numerical corrections, but

increasingly complex asymmetries into the theory. Truncation therefore imposes

a possibly inappropriate symmetry or other constraint on the model. Thus, in

Ref. 5 the _/-expansion for fhe Reynolds stress r was truncated at second order as

suggested by previous work of Yoshizawa n and Speziale I2. Although this type of

modelling permits unequal nbrmal stresses in a simple shear flow, it is not maximally

asymmetric: for example, in a flow with mean velocity components Ui(xl,x2), a

cubic model including a term r ,.. VU2VU T + VUVU T2 would permit nonzero r23

in the presence of vanishing OU2/Ox3 and OUz/Ox2, an effect which cannot be ruled
out in advance.

Although generalizations la of the Cayley-Hamilton Theorem limit the number

of independent tensors S("), anisotropy and asymmetry cannot exist at all without

some terms of higher order in T/; indeed, truncation at lowest order in _/just produces

a theory of isotropic turbulence. But the series truncated at any higher order can

be unsatisfactory in flow regions in which some components o_z(_-_,j )g/e are large. In

such regions, the truncated series is dominated by its highest order terms. For the

quadratic stress models of Refs. 5, 11, i2, this domination can produce negative

normal stresses in the buffer layers of wall bounded flows. Increasing the order of

truncation obviously exacerbates this problem.

It follows that finite truncation of the 0-expansion is theoretically unsatisfactory.

Yakhot et al9 therefore propose that this expansion must be summed, even.if only

approximately, and have suggested a prototype summation in a different context.

It should be noted that the same issues arise naturally in Yoshizawa's formalism,

which also generates infinite series in the mean velocity gradients (and in other

quantities as well) for correlations of interest in turbulence modeling. Yoshizawa

has concluded independently that summation of this series is essential and has also

derived a Reynolds stress transport model by introducing such summations _4.

In this paper, the perturbation series which the Yakhot-Orszag renormalization

group generates for the correlation

/ u, Op (1)
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is summed by a low order Padd approximation. Coefficients'are evaluated to lowest

order in the e expansion, but the summation includes effects of all orders in 7/. The

result is essentially identical to the "model 1" proposed by Launder, Reece, and

Rodi 6. An entirely analogous treatment of return to isotropy yields a model of the

form proposed by Rotta 7. Combining these models leads to a preliminary Reynolds

stress transport model. The problem of closing the Reynolds stress diffusion terms

is addressed. This problem also leads to an infinite sum.

While it is encouraging that renormalization group methods can be used to derive

familiar models, the goal of this investigation is not limited to providing theoreti-

cal justification for the LRR and Rotta models, which although widely applied are

nevertheless deficient in several well-documented respectsl'2'L Instead, renormal-

ization group methods together with approximate summation of the _/-expansion

can be used to derive higher order and nonlinear corrections to these models in a

systematic fashion. Explicit development of such models is left to future investiga-
tions.

2.1 Analysis of the Pressure Gradient-Velocity Correlation

The analysis will follow Yakhot and Orszag's derivation of turbulence transport

models by renormalization group methods 4. The equation for velocity products is

Oui Ouj

+voV_uiui - 2Vo Ox v Oxp (2)

where v0 denotes the kinematic viscosity. The product -(uiOpiOxj + ujOpiOxi)

on the right side of Eq. (2) will become the correlation IIij defined by Eq. (1)

following elimination of all fluctuating modes.

Thus, the perturbation series will be written as

17= T0 +T1 +.--

where T, is of order n in u < and all amplitudes are evaluated to lowest order in e.

To lowest order in e and SK/e

T1 = -_K \Oxj + Ozi ,] (3)

in agreement with the analysis of Crow. 16

At the next order in SK/e, in the high Reynolds number limit,

+(ij)

(4)
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where (0) denotes deviatoric part and (ij) denotes index interchange in the preced-

ing term.
The next order will produce a term T3 containing cubic products of velocities u <.

In view of the form of the LRR model, it is reasonable to ask whether a term with

only one gradient, proportional in the high Reynolds number limit to rVU might

occur at this order. Such terms do occur, but they cancel. Evaluation of T3 proves

to require expansions of the projection operators to second order, leading instead

to terms S (3) homogeneous of degree three in the mean velocity gradient and its

transpose. In general, the term Tn of order n has the form S(n)(K/e) _. As noted

in the Introduction, it will be imperative to include effects of all orders in SK/e

in the model, but because the terms T,_ involve ever higher order derivatives of

the transverse projection operators, they do not have an obvious law of formation.

Therefore, an exact summation does not appear feasible.

A simple approximate summation is obtained by introducing the perturbation

series 5 for u-T_j (°) in the form

u \ Oxj + Oxi } -uiu-J(°) + Z S('0(K/E)n
n>2

and dropping the quadratic terms. The resulting model,

OXj "_- OXi / _- C+I .__ _-_(0)L ' p oxp oxp j

L OUp OUp"(o)+ C¢2 oz----7+ az---: (5)

with
16 2

C+I = -- = .7619 C+2 = -- = .0952 (6)
21 21

agrees with the perturbation series (3) and (4) to terms of order S (a). However,

unlike the explicit quadratic model which results from simply dropping the O(S (3))

terms, this model includes effects of all order in SKIt. The consequences of this

fact will be discussed later. This type of summation has also been applied by

Yoshizawa TM. Eqs. (5) and (6) can be compared with Launder, Reece and Rodi's

"model 1", Eq. (5) with the empirically adjusted constants

C+I = .7636 C+2 = .1091 (7)

In this model, the constants COl and C÷: were not chosen independently; instead,

to insure some consistency conditions introduced by Rotta 7, Launder, Reece, and

Rodi set 6

c2 +s 8c2 -2
C+I -- C+2 -

11 11
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where only the constant C_ is arbitrary. By eliminating C_ between these equations,

there results

8c+, -c+2 =6 (8)

which is also satisfied" by the choice of constants in Eq. (6). The LRR model

corresponds to the choice (72 = .4; Eqs. (5) and (6) correspond instead to the

choice C2 = 8/21 -,_ .36.

The approximate summation used to derive Eq. (5) can be systematically gener-

alized to generate an infinite number of models for//O. For example, suppose that

the perturbation series for r is introduced into the cubic terms in the perturbation

series instead of in the quadratic terms as above. This substitution will produce a

model which can be written symbolically in the form

/7 ~ S (1) + S (2) + T(S (1)' + S (2)')

where TS (i)' denotes a sum of matrix products in all possible orders of 7- and terms

S (i). The requirement that the original series agree to order 8 (4) with the approxi-

mation when _- is replaced by its perturbation series determines this approximation

uniquely.

2.2 The Return to Isotropy Model

The analytical description of return to isotropy is no less controversial than the

modeling of the fast pressure strain term 3. In the usual approach to turbulence

modeling, in which correlations generated by Reynolds averaging are closed phe-

nomenologically, this process is considered to result partly from the pressure cor-

relation through a "slow" term independent of the mean flow, and partly from the

\/ u0_au'_Ou"
\

deviatoric part of the dissipative correlation /. From this viewpoint, the
¢

analysis in Sect. I is incomplete because it discloses only a term proportional to the

mean velocity gradient, but no slow term. The return to isotropy will be derived

here by renormalization group methods following a suggestion of Yakhot 1_.

From the renormalization group viewpoint, it is natural to investigate the return

to isotropy, even independently of the stress transport equation, by writing the

perturbation series for

Oul / ui(k O)(-iw)uj((7)dO + (ij) (9)ui_-_ + ui" _ =

This perturbation series differs from the perturbation series for the Reynolds stresses

previously reported 5 only in the occurence of an additional factor -iw in all fre-

quency integrals.

The analysis is straightforward. Only the deviatoric terms require attention be-

cause the part of the correlation proporational to/fij contributes to the transport

equation for K which has been analyzed by Yakhot and Smith 15. The lowest order

deviator appears at first order in 7; to lowest order in e
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where

( ou, ovj )
Tx= Oxj + , / (10)

dT1 = 1 T_ (11)
dr 15 uA 2

In view of the form of the Rotta model, it is reasonable to seek terms at the next

order proportional to uiuj. As in Sect. I, such terms do appear, but cancel exactly.

This apparently ubiquitous cancellation was also obtained by Smith and Reynolds xs

in an analysis of the e transport equation. Accordingly, the second order analysis

in y produces quadratic terms in the velocity gradients. Finite truncation of this

series violates the requirement that return to isotropy be independent of the mean

flow. Therefore, we must seek a reasonable approximate summation. The form of

the lowest order term given in Eqs. (10) and (11) suggests

II_ff Vl [ OUi OVj ) _'1' = --u -- + _ uiu_(°)
P _OXj OXi] 1]

Despite its triviality, this replacement does produce an approximate sum which

agrees exactly with perturbation theory to lowest order. It therefore can be consid-

ered a type of Pad_ approximation.

At the infinite Reynolds number asymptotic limit

//_ = _ uiuj(o) (12)

where, in the Yakhot-Orszag theory, CR = :D/e --_ 1.6. Equation (12) is therefore

simply the standard Rotta model with Rotta constant .._ 1.6 in agreement with an

earlier proposal of Yakhot lr.

A preliminary discussion of higher order summation may be appropriate. By

analyzing the spectral dynamics of the return to isotropy, Weinstock 3 concluded

that the shear and normal stresses relax at different rates. Although this behavior

is obviously not accommodated by the Rotta model, it is consistent with the present

theory: the perturbation series for H _ is obtained from the series for T by multiplying

the term of order n by the factor Cne/K for some constant Cn. The C, are all

unequal; therefore, the Rotta model is not exact. Now comparison with the series

for _" shows 5 that relaxation of the shear stress is governed by the linear term S (1),

whereas relaxation of the normal stresses is governed by the quadratic term S (2).

Since 6'2 _ C1, these stresses relax at different rates. The difference is suppressed

in the Rotta model, which arose in the present formalism by replacing all of the C_-
by C1.

2.3 Algebraic Reynolds Stress Models

The approximation, due to Rodi 2°, of the Reynolds stress transport equation

by an algebraic model under the conditions of semi-homogeneous flow (negligible

diffusion of T and 7"/K approximately constant) takes the form
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(13)

where/7 and H' depend on r and _TU. Explicit solutions for _- can be obtained,

at least in principle, for any such approximation _. Briefly, one introduces a basis

for polynomials in VU, and VU r. The basis contains 11 terms of homogeneity

order n _< 5. Writing r as a sum of these terms with unknown coefficients and

substituting in Eq. (13) leads to the explicit expression

= "}")si") (vv,vv ) (14)

where H} 'n) is a scalar function of VU and VU r such that

B}m)~ ivu]m

when [VU[ --, oo. The assumptions made on the approximate summations require

rn + n = 0; thus, r/K is bounded when SK/e -_ oo. For example, the familiar eddy

viscosity formula is replaced in Eq. (29) by a term

g 2

T _ -- H (-1) (VU, VU T) (VU + VU T)
6

Pope observed 2_ that the coefficients H (-n) in Eq. (14) would certainly be in-

tractably complex; although they could be explicitly exhibited by symbolic com-

putation, the result would only pertain to the particular implicit equation for the

Reynolds stresses assumed initially in Eq. (13). Therefore, it is equally reason-

able just to postulate simple forms for the functions H (-n). This type of modeling

could be particularly interesting when applied to the coefficients of the quadratically

nonlinear models of Refs. 5, I1, and 12.

2.4 Discussion

The present analysis of the Reynolds stress transport equation, based on the

Yakhot-Orszag renormalization group and (tensorial) _?-expansion summation as

suggested by Yakhot et al. 9, has led to a model transport equation incorporating the

well-known LRR and Rotta models. The analysis gives theoretical support both to

these models and to the constants sometimes used with them. More significantly, it

exhibits the LRR and Rotta models as lowest order approximations, and therefore

also supports their replacement with higher order nonlinear models which would

be deduced by more accurate approximate summations. The consistency of the

analysis with higher order effects like the unequal relaxation rates of shear and

normal stresses has been discussed.

3. Future Plans

The nonlinear eddy viscosity representation of the Reynolds stresses
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2 K (OU, OUj 
rij = UiUj = -_K6ij - C_,-- +e \OXj _Xi]

K3 [C_., ( OUi OUj ] (o) + Cr2 ( OUi OUp + OUj OUp s (°) + C_3 ( OUp OUp s (°)] (15)+
7 _,oxp ozp / _,ozp ozj ozp _ / _,_ oz_ /

in which K is the turbulence kinetic energy, e is the dissipation rate, C_, C_1, C_2, C_3

are constants, and (0) denotes deviatoric part, was proposed by Yoshizawa 11 in or-

der to model normal stress effects in shear flows by means of an explicit formula

for the stresses. The significance of this formula is not limited to this property:

Yoshizawa's derivation using a special perturbation expansion, the two-scale direct

interaction approximation, showed that the expansion could be continued to any

order in the mean velocity gradient and thereby exhibited the Reynolds stress ten-

sor as the result of an infinite number of increasingly complex interactions between

the mean velocity field and turbulence. Related expansions are given in Refs. 5, 12.

The infinite expansion which contains Eq. (15) can be written symbolically as

h-2 g 3

r = KAoS °+'" A1SI_ + _ E Ai2S2i +"" + -
i<_N2

Kn+l

E AinS_ +"" (16)
C n

i<_N,_

Eq. (16) can be considered a decomposition of the Reynolds stress

7 = T O+ T 1 +''' (17)

where

Kn+l

r"- e _ E A,_S-_ = Z Y_ (184)
i<N,_ i<Nn

where S? denotes a symmetric tensor homogeneous of degree n in the mean velocity

gradient VU and its transpose, Nn denotes the number of linearly independent

terms of order n (so in Eq. (15), N2 = 3), and the Ain are constants.

In an analysis of the Reynolds stress transport equation by renormalization group

techniques 35, we found analogous expansions for the term which governs the return

to isotropy,

II' = e rr,'/. 2o cl
K 3

-KL-U "-'1° + 7 E B,,S_ +...]
i<_N2

and for the rapid pressure-strain term

(19)

II = 2-K S 1 + C1 + + D1 _7uTs1j5 7-
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K 3

Y: [c,,(s, vu*+ws ) '°'
i_<g2

+ (s vu + vuTs )] + ... (20)

Suppose that these sums are introduced into the Reynolds stress transport equation

"/"= II' +II - P + D (21)

where the dot denotes convective derivative, P = rVUT+ VUr is production and D

denotes the diffusion term. In order to obtain a Reynolds stress transport equation,

it is necessary to express the sums (19) and (20) in terms of T and VU. Although

the coefficients A, B, C, D can be explicitly exhibited to any order in perturbation

theory, they do not have an obvious law of formation. Therefore, the sums (19)

and (20) can only be approximated by polynomials in r and VU if some hypotheses

relating the coefficients is introduced. There is no unique hypothesis of this sort,

but the simplest 35 seems to be

Bin�B1 = Ain/Ax, n > 2

Ci,_/Cx = Di,JD1 = Ai,_/AI, n>_2
(22)

which leads to the Rotta return to isotropy model and to an LRR model for the

rapid term. The approximation expressed by Eq. (22) can be compared to the

summation introduced in an analogous context by Yakhot et .kl. 9, and to Pad_

approximation: it agrees with the perturbation theory of Eqs. (19), (20) to lowest

order, but includes effects of all order in VU.

By evaluating more terms of the perturbation series explicitly and introducing

an equation like (8) for coefficients of higher order, a hierarchy of models could be

generated. They would initially be nonlinear in VU, as advocated by Speziale 33,

but one might introduce the perturbation series for _'-r to obtain a model nonlinear

in ra,2. However, the close analogy between Eqs. (19) and (20) and Yoshizawa's

expansion (16) suggests a different approach: namely, use Eqs. (17) and (18) to

replace S_' in Eqs. (19) and (20) by 7"_'/Ai,. Substitute these modified expressions

and Eq. (17) into the transport equation Eq. (21), treat r_ as having order I VU In,

and separate the terms of like order in I VU ] in the standard perturbation theoretic

fashion. The result is that the terms _-/_ in the decomposition (17), (18) themselves

satisfy coupled transport equations.

For simplicity, let us write an approximate system for the r n instead of for the

ri_ and assume the most elementary scalar diffusion model. Then the the single

transport equation for r would be replaced by a system

= -C r" + (r"-xVU r + VUr"-l) (°1

K 2
+C_ ('rn-lvu + vUT'rn-1) (0) + C_V2rn, n > 1 (23)

6

Since r = _ r', the system (6) should be constrained to satisfy Crow's condition

and to contain the exact production term following summation over n. Making the
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coefficients C_, C_', C_', C_; independent of n reduces the system to a model of the

LRR form for r = _ r".

This conclusion also follows from Leslie's analysis 34 of the direct interaction (DIA)

equations for shear flow. Leslie suggested a perturbative solution for the (tensor)

correlation function and Green's function

U = U ° + U 1 + ..-
(24)

G=G ° +G 1 + ...

where U n and G" are of the order [ VU In, and observed that this expansion is

simultaneously an expansion in powers of the mean strain, and a decomposition into

symmetry types of increasing complexity. This is also a feature of the expansion

(16). Substitution of Eq. (20) into the equations of the direct interaction approx-

imation gives a coupled system for the U n and G n in standard fashion. Then in

principle, by integrating each equation of this system over all wavenumbers and

introducing the definitions

we could attempt to obtain coupled transport equations for the r". Unfortunately,

the derivation of equations for single-point quantities from DIA is not entirely

straightforward, and more heuristic methods like two-scale DIA s,14 and renormal-

ization group are required.

The simplest model of this type is a two component model,

r - _KI = T 1 + r 2

with

4 (VU + VU T) + (C_ 1) (r2VU T + VUr2) (°)_' = - C_ r 1 - -_ K

K s
+c_(T_vv+VUTT2)(°)+c_v--w _

_ =- c_ _+ (Cl_- 1)(_IvuT+ vv,_) (°)

+C_ (r'VU + VUTr') (°)+ c_vK2 Vr 2
C

(25)

The appearance of r 2 in the equation for r 1 is required by the production term

constraint which is violated by direct truncation of the system (20) at the second

order. The properties of this model for simple shear flow, in which OUi/Oxj =

$6il 6j2 follow by setting

fa] [ 11T 1 ---T12 1 T 2 : "/'22

0 7"33

(o)

(26)
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Then C_ describes the return to isotropy of the shear stress, and C_ the return

to isotropy of the normal stresses. These relaxation rates can be unequal in this

theory, an effect predicted by Weinstock's analysis 3 of the spectral dynamics of the

return to isotropy. Weinstock suggested further that the individual normal stresses

relax at different rates: this effect is not accommodated by the present model, but

could occur in a model in which T 2 is divided into the three tensor components

_, _, _ of Eq. (18).

The inequality of the Rotta constants in the present model can be used to over-

come a defect of models of the LRR type, that in semi- homogeneous flows in which

aii= 7[°)/K is approximately constant, the ratio all is too small whereas a12 is

too big 1°. Following Speziale 19, write Eq. (21) as a system of equations for the

ratios aij and set/_j = 0. There results,

z/2

2c21
- (27)

a11 - + 1) +  a12

a22 --
(-C_ + 1) + _al_.

When P/s = -rla12 = 1,

"4 1

15C]_

cl.
- _T" 1 a22 -

_-'f- t_ll
t_ h 'JR

2 2 2

-gcl]/c 

(28)

Eq. (28) shows that setting C_ < C_ both increases a!l and decreases a12 and

thus improves the agreement between theory and experiment. The trend required

here is consistent with Weinstock's findings 3 that the Rotta constant for the normal

stresses should be smaller than the shear constant and should take values close to

1.0.

The inequality of the coefficients describing the rapid terms affects the behavior

of the model under rapid distortion. The rapid distortion analysis of passively

strained turbulence predicts that a one-component limit state is reached in which

r,:i = 2K6,:16il, 7? = SK/e --, oo and P/s is finite 21. Whether or not this limit

can in fact occur as an asymptotic state, a stress model should accommodate it

because it can exist approximately in steady flows as a "spatial transient" in strongly

111



• °

R. Rubinstein

inhomogeneous regions of very high convective or diffusive transport 17. Moreover,

models of the LRR form do not capture the transient evolution of rapidly distorted

flows well. Let us assume that all model coefficients are functions of the "state"

of turbulence, following Shih and Lumley2; the precise parametrization of the state

will be left to future investigations. From Eq. (13), it is evident that P/E = -l/ax2

will be of order 17in the one-component state in which all = 4/3, a22 = -2/3 unless

2 A 4

-'_ (C_ - 1) + 3C] = "_

in this state. But Eq. (13) also shows that all = 4/3, a22 = -2/3 requires

C12 -_0, C_ -_0

in this state. These conditions are inconsistent in a model in which C_ = C12 and

C a = (722, but are clearly consistent with the present proposal.

The advantages of this model are consistency with a systematic perturbation

theory, the possibility of unequal relaxation rates for normal and shear stresses

in relaxing strained turbulence, improved agreement with experimental data for

universal ratios in simple shear flows, and the possibility of accommodating the

one-component limit of rapid distortion theory.
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1. Motivation and Objectives

Transition to turbulence in aerospace applications usually occurs in a strongly dis-

turbed environment. For instance, the effects of free-stream turbulence, roughness

and obstacles in the boundary layer strongly influence transition. Proper under-

standing of the mechanisms leading to transition is crucial in the design of aircraft

wings and gas turbine blades, because lift, drag and heat transfer strongly depend

on the state of the boundary layer, laminar or turbulent. Unfortunately, most of

the transition research, both theoretical and experimental, has focused on natural

transition. Many practical flows, however, defy any theoretical analysis and are ex-

tremely difficult to measure. Morkovin 5 introduced in his review paper the concept

of bypass transition as those forms of transition which bypass the known mecha-

nisms of linear and non-linear transition theories and are currently not understood

by experiments.

In an effort to better understand the mechanisms leading to transition in an

disturbed environment, experiments are conducted studying simpler cases, viz. the

effects of free-stream turbulence on transition on a flat plate, Sohn and Reshotko 14

and Wang et al.xg. It turns out that these experiments are very difficult to conduct,

because the generation of free-stream turbulence with sufficiently high fluctuation

levels and reasonable homogeneity is non trivial. For a discussion see Morkovin 5.

Serious problems also appear due to the fact that at high Reynolds numbers the

boundary layers are very thin, especially in the nose region of the plate where the

transition occurs, which makes the use of very small probes necessary.

The effects of free-stream turbulence on transition are the subject of this re-

search and are especially important in a gas turbine environment, where turbu-

lence intensities are measured between 5 and 20%, Wang et al.19. Due to the fact

that the Reynolds number for turbine blades is considerably lower than for aircraft

wings, generally a larger portion of the blade will be in a laminar-transitional state.

Turner 15 shows that the effect of free-stream turbulence on transition significantly

increases when the free-stream turbulence levels become larger than 5% and is ac-

companied with a significant increase in heat transfer. Recently Rai and Moin la

presented a direct numerical simulation of transition to turbulence on a fiat plate

in a free-stream with Much number .1 and turbulence levels at the leading edge

of about 2.75%. Direct numerical simulations offer a unique opportunity to study

specific phenomena, while excluding disturbances from other sources. The com-

putations from Rai and Moin show some impressive results, especially regarding

intermittency and turbulent spots. Their numerical simulation, however, has the

same problem as with most of the experiments, namely a very low Mach number,
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while many applications operate in the transonic regime. Due the' nature of their

numerical scheme, a non-conservation formulation of the Navier-Stokes equations,

it is a non-trivial extension to compute flow fields in the transonic regime.

This project aims at better understanding the effects of large free-stream tur-

bulence in compressible boundary layers at Mach numbers both in the subsonic

and transonic regime using direct numerical simulations. The present project aims

at computing the flow over a flat plate and curved surface. This research will

provide data which can be used to clarify mechanisms leading to transition in an

environment with high free stream turbulence. This information is useful for the

development of turbulence models, which are of great importance for CFD appli-

cations, and are currently unreliable for more complex flows, such as transitional

flows.

2. Accomplishments

Direct simulations of transition in compressible flows with both shocks and bound-

ary layers requires an extremely accurate and efficient scheme. Several conflicting

requirements present a serious challenge which cannot be met by existing numerical
schemes:

• The small grid spacing in the boundary layer makes an implicit scheme necessary,

because an explicit scheme would have a severe time step limitation. Implicit

schemes usually are not time accurate and rather dissipative. •

• Higher order accurate schemes are necessary but higher order accurate schemes

generally do not give non-oscillatory solutions around discontinuities, such as

shocks. Many of the popular non-oscillatory shock capturing schemes, such as

TVD (Total Variation Diminishing) methods, are only first order accurate in

multi-dimensional flows and even in one-dimension they reduce to first order at

non-sonic local extrema.

In order to satisfy these conflicting requirements a significant effort has been made

to improve and combine several successful numerical schemes. A fully implicit and

time accurate code for the solution of the three-dimensional compressible Navier-

Stokes equations in general geometries has been written and tested. Higher order

accuracy and shock capturing are implemented using an Essentially Non-Oscillatory

(ENO) scheme. Time accuracy is obtained using a Newton method.

In the next section a brief description of the numerical scheme will be given

followed by the discussion of a series of tests aimed at validating the code.

2.1 Numerical Scheme

The compressible Navier-Stokes equations are solved using a finite volume method.][
A detailed discussion of finite volume and difference methods can be found in

Vinokur 18. The integral formulation of the Navier-Stokes equations, assuming all

variables are continuous in time, is given by:

O /y UdV + Js n._'dS=0(0 (t)
(2.1.1)
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Here V(t) and surface S(t) are the volume and outer surface of the domain _2

and n an outward unit normal vector at S. The vector U represents the conserved

variables: (p, pu, pv, pw, e) r, with p the density, u, v and w the velocity components,

and e the total energy. The tensor _" is defined as 9v = 8 + r, with g the inviscid

contribution defined as:

pu 2 + p puv _ [yaw

El = puv ; E2 Pv2 +P/ ; E3 = pvw (2.1.2)
puw pvw pw 2 + p

(e+ p)u (e + p)v / (e + p)w

and "g the viscous contribution:

(0) (0) (0)V_ = r_ ; V2 = r2 ; V3 = _'3 (2.1.3)

u-Tz + qz . u- T2 +q2 u • 'r3 + qa

The shear stress tensor T, with components (_1, _2, _3) is defined as:

_1 (g(Vu -{- Vu T) + )_(V. u)_ r)T=

and the heat flux q as:

(2.1.4)

_VT

q = (7- 1)ReMLPr (2.1.5)

The variables p, T, _, A and _ represent the pressure, temperature, first and

second viscosity coefficient and thermal conductivity, respectively. The coefficients

Re, M=, and Pr are the Reynolds, Mach, and Prandtl numbers. All variables are

non-dimensionalized using free-stream variables and a characteristic length L.

The Navier-Stokes equations are solved using a finite volume method because we

seek a weak solution in order to capture shocks in high Reynolds number flows.

The finite volume method is also the most natural way to satisfy the conservation

properties of the differential equations. After subdividing the volume V into a set of

disjunct cells we obtain the finite volume discretization for a cell with index i,j, k:

0 (VVi,j,k) -Jr "1 ^1 "2 "2 "3 "3_-_ Fi+½,j,k - Fi-½j,_ + F_,j+½,k - Fi,j-½,k + Fid,k+½ - F_j,k-½ = 0

(2.1.6)
where a barred quantity with index i, j, k is an average of the unbarred quantity

over the cell with index i,j,k and indices i 4- ½, j 4- ] and k 4- ½ refer to values at
the cell faces. The fluxes _'i at the cell faces are defined as:

_,t = s _y (2.1.7)

with S l the cell face in the direction i. The computation of the cell face S l and

volume V has to be done with great care in order satisfy the geometric conservation

law, for details see Vinokur19:
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Flux Approximation

The crucial part in the development of a finite volume method is the approxi-

mation of the fluxes at the cell faces. The flux Fi+½_ 1 is computed using the Osher

approximate Riemann solver. The first order accurate conservative flux is given by:

_'_+],j,k 1 A1 "1 - fr [o_'lldu)= _(Fi,j,k + Fi+l,j,k i
(2.1.8)

with equivalent expressions for the other two directions. The integral is computed

along a path in phase space, connecting the points with index (i, j, k) and (i+ 1, j, k).

Along each subpath a Riemann problem is solved, which is used to determine the

intermediate states. In this way exact expressions can be derived for the path inte-

grals. More details about the implementation of the Osher scheme can be found in

Osher and Solomon _, Osher and Chakravarthy 7, Chakravarthy and Osher 1 and Rai

and Chakravarthy 1°. The Osher approximate Riemann solver is the most accurate

approximate Riemann solver and satisfies the entropy condition, contrary to the

Roe approximate Riemann solver which needs an entropy fix to eliminate steady

expansion shocks. The Osher scheme captures steady shocks in at most two points.

The most important reason for the choice of the Osher scheme, however, has

been its low numerical dissipation in boundary layers, Koren 4. Most schemes for

the Euler equations are very dissipative in the boundary layer and not wen suited

for direct numerical simulations. In earlier work, Van der Vegt 1T, modifications to

flux vector splitting schemes were discussed to alleviate this problem, but although

significant improvement was achieved on steady laminar boundary layers, it was

not possible to reach accuracy levels necessary for direct simulations.

Higher order spatial accuracy

Direct simulations require a high accuracy which cannot be achieved with stan-

dard second order schemes. It is fairly straightforward to derive higher order accu-

rate finite difference schemes, but shock capturing then will not be possible. The

development of higher order accurate, multi-dimensional finite volume schemes,

capable of shock capturing still is an area of active research, and has been an im-

portant subject in this project. A significant effort has been made to combine the

Osher approximate Riemann solver, discussed in the previous section, with an ENO

scheme. Results of this work are described in Van der Vegt 17, where the different

ENO methods are discussed and results of various tests are discussed.

Higher order accuracy of a finite volume method can be defined is various ways.

One approach is to define higher order accuracy with respect to the cell averaged

values. This resembles most closely the finite volume description, which gives equa-

tions for the cell averaged values. Another definition of higher order accuracy uses

the point values at the cell center, which is used in conservative higher order finite

difference methods. Both approaches are being used. For subsonic flows currently

the fifth order scheme, developed by Rai 9, is used, which is based on a Taylor series

expansion of the flux vector along the lines presented by Osher and Chakravarthy s.

This method is a conservative finite difference scheme. It has the benefit that it is
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simple to implement in more dimensions, but does not allov_ shock capturing. Os-

her and Chakravarthy s demonstrated how to make these schemes TVD and allow

shock capturing, but they are not very useful and only first order accurate globally.

The scheme therefore is used in its unlimited form, limiting its application to flows

without discontinuities such as shocks. The scheme also is rather expensive and

work is in progress to improve its efficiency.

For flows with shocks research has been carried out to develop higher order ac-

curate ENO schemes. ENO schemes use an adaptive stencil where a searching

algorithm tries to find that part of the flow field surrounding a cell which is the

smoothest. Then a conservative, higher order accurate interpolation method is used

to "reconstruct" the point values from the cell averaged values. Due to the fact that

the interpolation process only uses data from the smooth part of the flow field nu-

merical oscillations will be minimized. In this way uniform higher order accuracy

can be obtained. The first ENO methods were developed by Harten et al. _, and

later modifications were proposed by Shu and Osher 12,13. In Van der Vegt lr the

different methods were compared and it was found that the ENO scheme, using

primitive function reconstruction from cell averaged variables with the Cauchy-

Kowalewski procedure for time integration combined with the Osher approximate

Riemann solver, was the most accurate and robust. In one dimension it has been

successfully used up to fifth order accuracy, but due to the fact that in multi-

dimensional flows currently dimension splitting is used, its accuracy is limited to

second order in more than one dimension. Work to extend this scheme to higher

order accuracy in multi-dimensional flows is in progress.

Time integration

Due to the very small gridspacing necessary at the wall and in critical layers

explicit time integration would result in a serious time step limitation. To alleviate

this problem implicit time integration has to be used, but most implicit time inte-

gration schemes make assumptions in the implicit part which reduce or eliminate

time accuracy. The development of implicit and time accurate numerical schemes

therefore has been a significant part of this research. Time accuracy is obtained

using the Newton method discussed in Rai g, which solves the non-linear system of

equations in the implicit time integration scheme using a Newton method. Rai uses

this method also to reduce the error caused by approximate factorization. We do

not use approximate factorization but solve the whole matrix system iteratively, see

Van der Vegt 1_, and need the Newton scheme only to reduce the error due to the

time linearization. This iterative scheme also has the benefit that it is not neces-

sary to use an exact linearization of the flux vectors, which can be very difficult

and time consuming to obtain. First order Steger-Warming flux vector splitting is

used in the implicit scheme, while a higher order accurate spatial discretization is

used for the explicit part. At each time step the Newton iteration is performed

such that the accuracy of the higher order explicit part is maintained. The use of

an approximate linearization, however, limits the maximum time step and work is

in progress to evaluate if a more accurate linearization would improve the perfor-

mance and robustness of the scheme. Especially at high Mach numbers there still
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are convergence problems for large Courant numbers when the scheme is used to

obtain steady state solutions.

2.2 Results and Discussion

Several computations have been carried out to test the code and the various

numerical schemes. In order to test the Osher approximate Riemann solver and

the ENO schemes a large number of shock tube calculations have been carried out,

a detailed description of this work can be found in Van der Vegt 1_. The different

ENO schemes tested were the ENO method from Harten et al.a, using primitive

function reconstruction and either Runge-Kutta time integration or the Canchy-

Kowalewski procedure, and the Shu and Osher flux-ENO scheme. In all cases the

Osher approximate Riemann solver was used and the effect of the ordering of the

eigenvalues, viz. natural and reversed ordering, has been investigated. Four cases

with different difficulties were tested, see Table 1. The performance of the different

schemes was reasonable in most cases, but it turned out that the ENO scheme

with primitive function reconstruction and the Cauchy-Kowalewski procedure for

time integration (ENO-CK) was the most accurate and robust. Some of the results

obtained with this method, are shown in Figures 1 and 2. Figure 1 shows a left

moving shock followed by a contact discontinuity and a right moving expansion

wave. A difficult problem for the ENO schemes in case A is the fact that in the

initial stages there are not enough grid points available in the region between the

shock and contact or shock-shock. The ENO scheme searches for the stencil which

gives the smoothest part of the flow field around a grid point or cell. In these

cases there exist in both directions a discontinuity and there are not enough points

available to build a non-oscillatory higher order reconstruction. This problem exist

for all ENO schemes but the ENO Cauchy Kowalewski scheme is the least sensitive

for it. The other methods have mild to strong oscillations in these areas. One way

to solve this problem is to reduce the accuracy locally till enough grid points are

available to create a higher order reconstruction, but this is a problem which still

needs further attention. Case B, Figure 3, shows a left moving expansion wave and

a right moving contact discontinuity and shock. One of the problems in this case is

the appearance of a sonic point, which gives a small jump of O(_x) at first order.

The shock tube tests showed that it is possible to use a higher order scheme for

flows with discontinuities, but the convergence of these higher order schemes can

Case

A

B

C

E

eL

15000

988000

10000

573

PR UL

98400 0

9930 0

100000 0

22300 2200

UR

0

0

0

Table 1. Initial Conditions Shock Tube Tests.

TL TR

1378 4390

2438 2452

2627 272

199 546
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be at most first order around these discontinuities. Tests of all the ENO schemes

on smooth solutions showed that they all reached the proper level of accuracy. Test

are currently underway to check ff the ENO schemes give higher order accuracy in

regions outside discontinuities as they are supposed to. This is an important test

to see if these methods are capable of shock-turbulence interaction simulations.

In order to test the shock capturing properties of the code the flow field around

a circular cylinder at Mach 8 has been computed. Although the flow field was two-
dimensional the three-dimensional code was used to check if the flow field remained

exactly two-dimensional and the ge0metricc0nservation law was satisfied. Figure

3. presents contours of the pressure at a spanwise station along the cylinder. The

solution is the same at all stations. The flow field consists of a strong bow shock

where the Mach number changes from 8 to about 2.8 behind the shock at the

symmetry line. Apart from the strong shock another aspect of this case is the
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Figure 3. Pressure field of flow around a cylinder at Mach 8

fact that the flow field in the stagnation region ahead of the cylinder is subsonic.

The sonic line is at about 45 degrees with the flow angle and a smooth transition

is observed from the subsonic to the supersonic region. This case has also been

computed by Osher and Chakravaxthy 7 and the results compare well. To test the

ability of the code to simulate transitional flows which is a crucial test before bypass

transition can be simulated currently computations axe done on natural transition

in a fiat plate boundary layer. A comparion is made with the results of Fasel et
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Figure 4. Vertical velocity field in a flat plate boundary layer at Mach 0.08 with

periodic suction and blowing (vertical direction enlarged 20 times).

al.2, which computed transition in an incompressible boundary layer. In order to

make the comparison as accurate as possible a very low Mach number, M_ = .08

was chosen. This Mach number is approximately the lower limit for the numerical

scheme and despite the fact that the computations are fully implicit a severe time

step limitation is imposed by the sound waves. To start the simulation first a steady

laminar boundary layer is computed, which is a non-trivial task because a very high

accuracy is needed in this computation. The disturbances at the beginning of the

plate have an amplitude of 10 -4 and transition simulations require a very low nu-

merical dissipation. The disturbances are generated by periodic suction and blowing

in a strip somewhat downstream of the inflow boundary. This is done because there
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are always numerical disturbances due to the fact that the inflow boundary condi-

tions are not perfect. The disturbances are generated in a region of the boundary

layer which is linearly stable. When they move downstream first the transients are

damped and after they move in the unstable region the Tolmien Schlichting waves,

which are the most unstable two-dimensional waves, are amplified. In order to ac-

commodate for the fact that the subsonic outflow boundary conditions, which are

essentially inviscid, are not perfect in a boundary layer a buffer layer is added to the

plate to damp as much as possible the reflections coming from this boundary layer.

This is the same procedure as used by Rai and Moin n. The number of grid points

in this computation is 340 x 82. It turned out that the most efficient way to obtain

the steady boundary layer was to first start with the second order scheme running

at a Courant number of 120 using the implicit Euler time integration and to switch

to the fifth order scheme after most of the transients are damped out. The fifth

order scheme has a very low dissipation and would otherwise take a long time to

converge. The maximum CFL number for which the fifth order scheme is stable is

approximately 160. Ater the steady state was obtained periodic suction and blowing

were added and the fifth order scheme was used with the Newton time integration

scheme at a CFL of 60. Figure 4. shows a preliminary result of this computation

and it clearly shows the gradual build up of the boundary layer instability. The
results are currently analysed to make a comparison with the incompressible results
of Fasel et al.2_

3. Future Plans

Further testing of_the code will-i_av:e _to I be_done form0re complicated cases.

Currently a comparison with the results of stability of a flat plate boundary layer

at low Mach number with the results from Fasel et ai.2 is being completed. If

this comparison and equivalent tests for high Mach number boundary layers are

satisfactory a simulation of bypass transition on a subsonic flat plate boundary

layer will be made, followed by simulations of a boundary layer on a curved plate.

Also work has to be continued to develop higher order accurate ENO schemes for

multi-dimensional flows. This is crucial for direct simulations of transonic flows

with both shocks and turbulence.
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Runge-Kutta Methods Combined
with Compact Difference Schemes
for the Unsteady Euler Equations

Sheng-Tao Yu

1. Motivation and Objective

Recent development using compact difference schemes to solve the Navier-Stokes

equations show spectral-like accuracy 1'_. In this paper, we report further study

of the numerical characteristics of various combinations of the Runge-Kutta (RK)

methods and compact difference schemes to calculate the unsteady Euler equations.

Conventionally, the accuracy of finite difference schemes is assessed based on the

evaluations of dissipative error. The objectives are reducing the numerical damp-

ing and, at the same time, preserving numerical stability. While this approach has

tremendous success solving steady flows, numerical characteristics of unsteady cal-

culations remain largely unclear. For unsteady flows, in addition to the dissipative

errors, phase velocity and harmonic content of the numerical results are of concern.

As a result of the discretization procedure, the simulated unsteady flow motions

actually propagate in a dispersive numerical medium. Consequently, the dispersion

characteristics of the numerical schemes which relate the phase velocity and wave

number may greatly impact the numerical accuracy. The objective of the present

paper is to assess the numerical accuracy of the simulated results. To this end,

the Fourier analysis is performed to provide the dispersive correlations of various

numerical schemes.

First, a detailed investigation of the existing RK methods is carried out. A

generalized form of an N-step RK method is derived. With this generalized form,

the criteria are derived for the three and four-step RK methods to be third and

fourth-order time accurate for the non-linear equations, e.g., flow equations. These

criteria are then applied to commonly used RK methods such as Jameson's 3-

step and 4-step 3'4 schemes and Wray's algorithm 5 to identify the accuracy of the

methods. For the spatial discretizati0n, compact difference schemes are presented.

The schemes are formulated in the operator-type 6 to render themselves suitable for

the Fourier analyses. The results of the analyses provide CFL limits, the numerical

dispersion relations, and the artificial damping required for stable and time-accurate

solutions.

Finally, the performance of the numerical methods is demonstrated by numeri-

cal examples. The first case is a quasi-one-dimensional calculation of the acoustic

admittance in a converging nozzle. The CFD results are compared with Tsien's

analytical solutionT; the harmonic content of this flow field is limited to one fre-

quency mode. All numerical schemes of concern provide accurate solutions. The

second case is a one-dimensional simulation of a shocked sound wave. The harmonic
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content is complex and distinct differences between various schemes are observed.

The results are also compared with the analytical solution provided by Morse and

Ingard s. In the one-dimensional cases, details of the numerical methods in setting

up the initial conditions and the perturbation on the computational boundary are

described.

The third case is a two-dimensional simulation of a Lamb vortex 9 in an uniform

flow. This calculation provides a realistic assessment of various finite difference

schemes in terms of the conservation of the vortex strength and the harmonic content

after travelling a substantial distance. The numerical implementation of Giles' non-

reflective equations 1_ coupled with the characteristic equations as the boundary

condition is discussed in detail. Finally, the single vortex calculation is extended

to simulate vortex pairing 1°. For the distance between two vortices less than a

threshold value, numerical results show crisp resolution of the vortex merging.

2. Work Accomplished

2.1 Numerical Method

The Euler equations in Cartesian coordinates can be cast into a vector form:

3
OEioQ (1)

Ot Oxi
i=l

where Q is the unknown vector and Ei is the inviscid flux in the xi direction.

The Runge-Kutta algorithm is applied as the temporal discretization and the sec-

ond, fourth, and sixth-order compact difference schemes are applied to the spatial

discretization.

2.2.1 The Runge-Kutta Method

The use of the Runge-Kutta methods for flow equations stems from the applica-

tion of the methods to solve ordinary differential equations (ODEs). An ODE has

one independent variable and its solution is obtained by integrating the equation

from its initial condition. When one applies the Runge-Kutta method to the flow

equations, time is treated as the independent variable as is in an ODE, and the

convective terms are taken as the inhomogeneous part of the equations, such as

OQ
-&- = R(Q). (2)

Notice that the boldface symbols which represent vectors have been temporarily

dropped for typographic convenience. In addition, all results in the following dis-

cussion are valid for both scalar and vector equations.

The Runge-Kutta methods have algorithms of the form

Q,_+I = Q. + Ath(Qn, At), (3)
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where the increment function/_(Qn, At) is a suitable chos6n approximation to the

inhomogeneous part of the equation, that is, R(Q). In general, the calculation of

the increment function/_ is subdivided into N steps on the interval t" < t < t n+l.

And the final increment function /_ is a weighted average of the inhomogeneous

terms evaluated at the different steps on the interval t" < t < t "+_, that is

QI = Q" + At(an R"),

Q2 = Q,_ + At(a21Rn + ct22R1),

Q3 = Q. + At(a31R n + a32R 1 + a33R2), (4)

Qn+l = Qn + At(aN1Rn + aN2R' +'" + CtNNRN-1),

where the superscript n, 1, 2,..., and n+l denote the time steps on the time interval

t '_ <_ tl <_ t2 <_ ... <_ tN <_ t n+l, and aij is the weighting factor for the step i and

term j. There are _]_1 i weighting coefficients to be determined af_d an infinite

number of coefficient sets can be chosen. However, certain criteria must be met for

the algorithm to retain high-order accuracy.

In what follows, the criteria of the coefficient set of a 3-step Runge-Kutta method

to be third-order accurate is given. To proceed, we follow the conventional approach

and expand all inhomogeneous terms R i in Eqn. (4) to a Taylor's series about R '_

and drop all terms in which the exponent of At is greater than 3. The result

is compared with its analytical counterpart by equating terms in
At. The result is tabulated in Table 1. For the convenience of the

following simplification of symbols is activated: R denotes R(Qn),

R' denotes (OR/OQ) _, and R" denotes (02R/OQ2) '_. In addition to

the coefficients of all the powers of At, we also want the equality of

of the functions of R, R', and R". As a result, we find the criteria of

for the 3-step RK methods to be third-order accurate as,

like powers of

discussion, the

Q denotes Q'_,

the equality of

the coefficients

the coefficients

Or31 "4-Ot32 "4-Or33 --

a11(_32 Jr Ot33(Ot21 -I- 0t22 ) "--

_121_32 "_- (Or21 "4- _22)20t33 "--

_11 _220t33 =

1, (5a)
1

_, (5b)

1 (5c)
3'

1

_. (58)

Equations (5a) and (5b) are the criteria of first and second order accuracy, re-

spectively. The remaining equations are of third order term. Since four equations

contain six unknowns, the system is underdetermined, and two of the coefficients

may be chosen arbitrarily. The obvious choice is to let the two coefficients be null

to reduce intermediate storage and numerical operations. According to Eqn. (5d),
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none of c_ii where i = 1,2, 3, could be zero, and one can set the two of the three re-

maining coefficients to be zero. Therefore, at least one of the intermediate steps has

two non-zero coefficients. Consequently, one needs to store two steps of intermediate

solutions for the 3-step, third-order RK methods.

A 3-step Runge-Kutta method proposed by Jameson et al. 3 to solve flow equations

is

Q1 = Q, + AIR",

At ,
Q2=Q,+y(R +R1), (6)

At ,
O-÷l = Q" +-5-(R +R2).

It can be shown that the weighting coefficients of the a-step method satisfy only

Eqns. (5a) and (Sb). And the method is second-order accurate in time.

Wray 5 proposed another a-step method,

O' - Q" + At(_R"),

17R1Q2 = Q_ + _t(5R" - _ ), (7)

Qn+l = Q2 + At(3R - _ 5R2)'12

This formula may be manipulated to fit the generalized form as proposed in Eqn.

(4), and we obtain,

Q_ = Q" + at(_ R"),

Q':Q"+At(IR"+5R'), (8)

Wray's coefficients match aU the equations in Eqn. (5) and therefore the scheme is

third-order accurate. In this formula, a32 is set to zero and two sets of solutions

are needed in the second and the third steps. The calculation can be carried out by

either the vectorized algorithm proposed by Wray, or straightforward calculation

according to Eqns. (7) and (8).

A similar procedure can be applied to the 4-step Runge-Kutta methods, and the

criteria for the scheme to be fourth-order accurate are:

_41 "_ (142 "4-_43 "_ _44 "-- l,

1

aI10_42 -_- ((121 -_- a22)a43 -_-(a31 -_- a32 -_- a33)C_44 :- _,

(9a)

(95)
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• 1

_10/42 + (0/21+ 0/22)20/43+ (0/31+_32+ _33)20/44= _,
1

0_110/22 0/43 "_- [0{110_32 "_- (0/21 -{" 0/22)0_33] 0/44 "-- _,

3 1
0_110/42 "{-(O_21 -{-O_22)3(243 "_-(O{31 "_-_32 -_ 0_33)30_44 = 4'

la1210_220/43 + (0_21 + 0/22)(1110_220_43

1

+2 [(0/21 "_- 0/22)20/33 "_- O:1210/32] a44

1

+(0/31 + 0_32 + 0:33)[0_110{32 + (a21 "_- 0_22)0_33] 0_44 -- _,

1

0/I10_220_330_44 ----"2"4'

(9c)

(9d)

(9e)

(9.f)

(9g)

Equations (9a) and (9b) are for first and second-order accuracy, respectively. Equa-

tions (9c) and (9d) are for third-order accuracy. The remaining equations are for

the fourth-order terms. Here, seven equations contain ten unknowns, and three of

the coefficients may be chosen arbitrarily.

A 4-step RK method attributed to Kutta 11 for solving ODEs was adopted by

Jameson et al. a to solve the flow equations. The algorithm can be expressed as,

At

QI =Q. + -i-n _,
At

Q2= q. + __RI,
(10)

Qa = Q" +AtR 2,

At

Q.+I = Q. + -((R" + 2R I + 2R 2 + Ra).

The coefficients satisfy Eqn. (9) and the algorithm is fourth-order accurate. How-

ever, this method requires all four intermediate solutions in the final step. As a

result, the use of this scheme for large-scale calculations is undesirable.

Later on, Jameson and Baker 4 proposed another 4-step algorithm,

At -n

QI -Q" +--_R ,

_t R1
Q2=Q.+ 3 '

atn2
qa=q.+ 2-'

Q,+I = Q,+ AtR3.

(11)

This scheme was proposed to calculate the steady state solutions and the transient

solutions were not of concern. For that purpose, the algorithm is convenient to
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program and no intermediate solution needs to be stored. For th_ present investi-

gation, however, the weighting coefficients of this method satisfy only part of Eqn.

(9) and the algorithm is second-order accurate. Nevertheless, this formulation is

favorable compared to a 2-step, second-order RK method because part of the third

and fourth-order terms are satisfied, namely, Eqns. (9d) and (9g). Consequently, a

larger marching step, i.e., a larger CFL number, could be used.

2.2.2 Compact Difference Schemes

The remaining task of discretizing the flow equations is the spatial differencing

of the inviscid fluxes. An effective manner for generating a high-order, central

difference scheme is the compact difference method. The scheme is obtained by

using only three and five points to achieve fourth-order and sixth-order accuracy

in space, respectively. The gain in the accuracy is not based on the involvement of

more points as in the conventional approach, but on implicitly solving the derivatives

simultaneously at all locations. According to Hermite's generalization of a Taylor's

series, 12 one can get

¢/

, , ,ui_ 1 + 4ui + ui+l = ui+l -- Ui--1) "q- O(Ax4), (12)
I._X -

g ! I 1

ui-1 + 3ui + ui+l - 12Ax (ui+2 + 28Ui+I - 28ui-1 - ul-9.) + O(Ax6), (13)

where the superscript ' represents the spatial derivatives. Equation (12) is the

fourth-order method and Eqn. (13) is the sixth-order one. When the fourth-

order method is used in the interior nodes, a third-order biased implicit scheme a3

is adopted for grid nodes at the computational boundary, such as

2u 1 + 4u 2 = (-5ul + 4u2 + u3) + O(Ax3),

(14)

2u,_a_' + 4u,,az_l' _ _I (5Umax - 4Umax-I - Umaz-2) + O(Ax3).

When the sixth-order method is used in the interior nodes, the fourth-order scheme,

Eqn. (12), is used at locations one grid node away from the boundary and the

third-order biased scheme is used at the boundary. The application of the implicit

compact difference schemes with the appropriate boundary conditions involves the

inversion of a scalar tridiagonai matrix. The inversion of the matrix incurs little

penalty in terms of CPU time.

2.3 Fourier Analysis

By definition, any function, u(x,t), which is continuous, periodic, and square

summable can be expressed in a Fourier series expansion at a constant time,

(15)
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where L is the period of the function u(x, t), k is the wave number, and i is _L-].

The Fourier coefficient is defined as,

1 [L/2 u( x, t )e-i_'_k_ / L dz.
t) = -Lj_L/2

(16)

In the Fourier analysis of a finite difference scheme, functions are defined at discrete

points. The discrete Fourier series and its coefficients are defined analogous to their

continuous counterparts,

K-1

= V'(k)e
k=0

1 u,]e_i2, kl/K=
5=1

j = 0, 4-1, 4-2,..., 4-0o,

k=O, 1,...,K-1.

(17)

Here, the length of the computational domain L is decomposed into K grid nodes

(L = KAx). The superscript n denotes the time step and the subscript j is the

spatial location index. Similar to the continuous function, the algebraic system in

terms of the function exp(i2_rkj/K) is periodic over the computational domain L

(or K) and orthonormal, such as

ei2_kj/K _ ei2_k(j+K)/K

1 s'-I (18)

"-K E ei2_klJ/K e-i2_rk2j/K = tSklk_
j=O

where _fkl_2 is the Kronecker delta. Therefore, the establishment of the discrete

Fourier series and coefficients is self-sufficient, and is not an approximation of its

continuous counterpart.

As shown in Eqns. (17) and (18), the harmonic content of the discretized equation

is limited to the number of grid nodes used in the computational domain. A discrete

solution u_' at a location (j) and time (n) is a linear combination of K wave modes.

The Fourier analysis is performed by substituting each wave mode of the discrete

Fourier expansion, Eqn. (17), into the discretized flow equations to calculate the

amplification factor, g(k), which is defined as

g(k)-
fin(k) (19)

The procedure is repeated for all wave modes (k = 0,1,...,K - 1) and the full

spectrum of the amplification factor is obtained. In this process, we map the func-

tion u in terms of spatial variable x on the interval I-L/2, L/2] to the wave number

space on [-_r, _r] assuming that the analysis is local for an infinite and periodic do-

main. Therefore, the solution of the amplification factor on the interval [-Tr, 0] is
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the complex conjugate of that on [0, _r]. For this reason, the results of our Fourier

analyses are presented on the interval [0, _r].

In the present investigation, one-dimensional equations are considered for the

Fourier analysis. In addition, we can perform a similarity transformation to trans-

form the one-dimensional Euler equations to their characteristic form, i.e., three

decoupled scalar equations. Consequently, a scalar, advective equation on a peri-

odic domain is adopted as the model equation in our analysis,

 ouox= 0, (20)

where the phase velocity (A) is equivalent to the eigenvalues of the Euler equations,

namely u - c, u + c, and u where u is velocity and c is the speed of sound. The

phase speed (A) is treated as a parameter in the Fourier analysis to avoid the

Fourier convolution, therefore the analysis is linear. For the unsteady calculations,

the requirement of the time resolution of the flow field restricts the time marching

step. In other words, the variations of flow properties between time steps are small.

Thus, linear analysis is a viable tool.

In what follows, the procedure to obtain the amplification factor of the model

equation discretized by Runge-Kutta methods and compact differences is illustrated.

•. First, the generalized forms of the amplification factor for the 3 and 4-step Runge-

Kutta methods are derived. These representations of the amplification factors are

independent of the spatial discretization schemes. From the equations of Wray's

3-step scheme, Eqn.(7), we have

gl _ 1 ÷ 8 Z,

1 5 1
g_ = 1+ _z + _zg ,

1 3

g = 1 + -_z + -_zg _,

(21)

where

glQ. = Q1,

g2Qn = Q2, (22)

gQ. = Q.+I.

The variable Z represents the spatial discretization applied to the convective term (

-£Ou/c_x ). By substituting the amplification factors of the intermediate steps, g 1

and g2, into the last step of Wray's algorithm, we obtain the amplification factor,

g, for the 3-step scheme,

1z2g= l+Z+-_ + Z 3. (23)
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It is interesting to note that Eqn. (23) can be directly de'rived from the Taylor's

series expansion by adopting the invariance property of the time and spatial deriva-

tives of the model equation, i.e., Z = -)_Ou/Ox = Ou/Ot. This is valid because the

coefficients satisfy Eqn. (5), which is deduced from the Taylor's series expansion up

to the third-order term. On the other hand, the amplification factor of the 3-step

scheme proposed by Jameson et al., Eqn. (6), can be derived as

g= I + Z +Iz2 +Iz a. (24)

It is obvious that the scheme is not third-order accurate.

A similar analysis can be applied to the 4-step methods. Identical forms of the

amplification factors of both 4-step methods of concern (Eqns. (10) and (11)) are

obtained, such as

(25)

Unlike the case of the 3-step schemes, the effect of the order of accuracy of these

two 4-step schemes does not appear in the expression of the amplification factor.

This is because the amplification factor is derived based on the linearized equation.

Only by using Eqns. (5) and (9), which take into account nonlinear terms, can one

justify the order of the accuracy of the RK schemes.

The remaining task is to derive the explicit form of the spatial discretization

operation, Z, of compact difference schemes. The fourth-order compact difference

method, Eqn. (12), can be cast into the operator-type by defining

_2Ui -- Ui+I b 2ui + Ui--1, (26)

where ui could be any flow property of interest at grid point i. As a result, the

fourth-order method can be rewritten as,

(1+--_62) (Ou) -1-_z i--2A"--_ (ui+I-Ui-1)+O(Ax4)" (27)

This equation allows us to express (Ou/Ox)i in an explicit form,

(_-_)z = (14--_)--I ( ui+I--_i-I\ 2zaz ) + O(Ax4)" (28)

To proceed, we substitute this explicit, discretized form, Eqn. (32), into the model

equation, and we obtain

Z(4) _ 6Fsin(k)i

4 + 2cos(k)' (29)
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where F is the CFL number which is defined as F = )_At/Ax, and k is the normal-

ized wave number (it = 27rk/K) .

It is interesting to note that if the solution reaches a steady state solution, i.e., the

time derivative term is zero, the operator (1 + 62/6) -1 in the discretized equation

becomes futile and the spatial discretization is represented by (Ui+l - ui-1)/2Ax,

which is only second-order accurate. However, the steady state solution of the one-

dimensional wave equation is a constant and the spatial accuracy is meaningless.

On the other hand, the accuracy of multi-dimensional calculations is more complex.

For example, consider a two-dimensional version of the model equation discretized

by the fourth-order compact difference method, and we have

0--_+)_z 1+ _, -2_x +Au 1+-_- \ 2Ay --0.

(30)
Again, the operators (1 + 62-/6) and (1 + 62/6) are scalar tridiagonal matrices with

the dimensions IL x IL and JL x JL, respectively. IL and JL are the numbers

of the grid nodes in the x and y directions of the computational domain. When

IL = JL, two operators are identical. We then multiply Eqn. (30) by the operator

(1 + 62/6) and obtain the steady state equation as

Ax ui+a,j - ui-l,j + ,_y ui,j+l - ui,j-1 = 0. (31)
2Ax 2Ay

Therefore, the steady state solution is only second-order accurate.

Similarly, the spatial discretization of the sixth-order compact difference scheme

can be represented in the operator-type such as,

1

60Ax (u_+2 + 28ui+a - 28ui_, - ui-2) + O(Ax6). (32)

And we obtain,

Z(6) = _ F[4 sin(]_) cos(]c) + 56 sin(]c)]i (33)
1212 cos(]¢) + 3]

Again, when solving the steady state solution with same number of grid nodes in

each direction of the computational domain, the spatial discretization is represented

by (ui+2 +28ui+i - 28ui-i - ui_2)/60Ax. Unlike the case of the fourth-order scheme,

this representation does not match any conventional central difference scheme and
it is at most second-order accurate.

According to the above discussion, we can obtain the amplification factor g(k) for

various combinations of the Runge-Kutta methods and compact difference schemes.

The amplification factor g(k) is a complex number and can be expressed as g(k) =
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exp[igo(]_)], where dJ is the normalized frequency and is defined as go = 2rwAt/T,

w is the frequency, r is the the time period of function u_, and the phase speed

(,k) is equal to L/_. Here, the dissipative and dispersive artifacts of the numerical

schemes can be assessed:

1. Dissipation. The normalized frequency D is a complex number (D = c_ + i/3) and

its imaginary part represents the magnitude of the amplification factor, i.e.,

g(k) = e = e-" e
Ig(k)l =e -_ (34)

The magnitude of the amplification factor is the artificial dissipation. When

Igt -> 1, the scheme is unstable. For the calculations of unsteady flows, we want

Ig] to be less than unity but very close to it to ensure numerical stability with

minimum artificial dissipation. In the following section, we plot Ig] against k to

illustrate the artificial dissipation.

2. Dispersion. According to Eqn. (34), the relation of a(k) and k represents the

artificial dispersion. We plot (_ = a/F against k to show phase velocities. Notice

that the model equation is dispersionless and the phase velocity is a constant, i.e.,

),. After being normalized by the CFL number, the exact solution is a straight

line with 45 ° angle on the plot of & against k.

Figure 1 shows the results of the Fourier analysis of the third-order Runge-Kutta

(RK3) method combined with fourth (CD4), and sixth (CD6) order compact differ-

ence schemes and the conventional second-order central difference scheme (CD2).

The figures show the dissipative as well as dispersive effects at CFL numbers from

0.4 to 1.4 with an increment of 0.2 between neighboring curves. Figure la shows

the dissipation of the RK3-CD6 scheme. The method is unstable for CFL numbers

greater than 0.8. As the order of spatial differencing decreases (compare Figs. la,

lc, and le), the limit of the CFL number increases for stable calculation.

Figure lb shows the dispersiveefiTect-ol_ the RK3:CD6 scheme. For a CFL number

of 0.4, the phase velocity is correct for wave numbers up to 1.8. The phase velocities

are slower than they should be at large wave numbers. Increasing the CFL number

makes phase velocities deviate from the 45 ° straight line at smaller wave numbers.

Decreasing the CFL number merges the curves together to reach an asymptotic

curve. However, the dispersive effect at high wave numbers does not improve.

Comparing Figs. lb, ld, and If shows that the increase of the order of the spatial

differencing reduces the numerical dispersion at high wave numbers. Specifically, a

significant improvement is achieved by changing the spatial differencing from CD2

to CD4, whereas only a limited gain is obtained by switching from CD4 to CD6.

Figure 2 shows the results of the Fourier analyses of the fourth-order Runge-Kutta

(RK4) method combined with various central difference schemes. The CFL numbers

are the same as that in Fig. 1. Similar to the case of RK3, for the same CFL number

and wave number, e.g., CFL = 1.4, D = 1.5, higher-order spatial discretization
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introduces more artificial damping (see Figs. 2a, 2c, and 2e) and therefore reduces

the CFL number limit for stable calculation. Again, the dispersive error at high

wave numbers decreases as the order of the spatial differencing increases (see Figs.

2b, 2d, and 2f).

Figures. lc and 2c can be compared to show the difference of the dissipation

effects between the RK3 and RK4 methods. For the same CFL and wave numbers,

the RK4 method introduces more artificial damping, and a larger CFL number

could be used. On the other hand, Figs. ld and 2d show that an increase of the

order of the time marching scheme does not improve the dispersive effect at high
wave numbers.

From the above discussion, it is clear that reliable solutions of the finite difference

schemes are at low wave numbers. For example, for the RK4-CD6 method at CFL

= 0.8 (see Figs. 2a and 2b) the solution with wave numbers less than 1/3_r (6 grid

nodes per wave) is fairly accurate. Numerical solutions with higher wave numbers

(wave length less than 6 grid nodes) suffer significant dispersive and dissipative

errors. On the other hand, for the conventional RK4-CD2 method at the same

CFL, 12 to 16 grid nodes per wave are needed for an accurate solution.

It is interesting to note that compact difference schemes have no dissipative effect

at the highest wave number resolved by a given numerical grid, i.e., two grid nodes

per wave (see Figs. la, lc, le, 2a, 2c, and 2e). Nevertheless, a significant dispersive

error is introduced to these highest-wave-number waves and cause the even-odd de-

coupling of the numerical solutions. Furthermore, applying the compact difference

scheme twice to calculate the viscous terms of the Navier Stokes equations does not

eliminate the erroneous oscillation, owing to the linearity of the operation. These

high-wave-number waves continue oscillating with erroneous phase speeds through-

out the course of computation and eventually destroy the solution. It is therefore

appropriate to impose a small amount of high-order artificial damping to filter out

these waves while at the same time keeping the resolution at low wave modes intact.

Figure 3 shows the dissipation and dispersion effects of the RK4-CD6 method at

CFL=0.8 with various amounts of sixth-order artificial damping, defined as

A.D. = _ [ui+a + ul-a - 6(ui+2 + ui-2) + 15(ui+a + ui-3) - 20ui]. (35)

The range of _ is from 0.01 to 0.05 with an increment of 0.01 between ihe neigh-

boring curves. Comparison between Fig. 3 and Figs. 2a and 2b shows that no

additional damping at low wave numbers is introduced into the system by the im-

posed artificial dissipation for rl _< 0.03, whereas the undesirable high-wave-number

waves are dissipated.

2.4 Numerical Examples

2.4.1 Acoustic Admittance of A Nozzle Flow

The first case is a forced oscillatory quasi-one-dimensional flow in a converging

nozzle. The governing equations are

138



Compact Differencing/or the Euler Equations

OE0Q +_ = H (36)
Ot Ox

where

(o)Q= a, E- pu2+p a, H= p , (37)

\ (e+p)u

p is density, p is pressure, and e is the total energy defined as e = p(C_T+ }u2). C,_

is the constant volume specific heat. The variable a is the cross sectional area and

is prescribed as a function of x. The theoretical solution of the acoustic admittance

of a choked nozzle was provided by Tsien _ under the assumption that the velocity

of the base flow is a linear function of axial location as shown in Fig. 4. The nozzle

shape can be inversely derived according to Tsien's assumption, and we have

1 ( 2 9'-I 12(_-I)a -- _ 3' +-'---1-}"_ M2 ' (38)

where 7 is the specific heat ratio and M is the Mach number which can be expressed

as

X 19'+1 9'-1(X) 2M- _-_ _ 2 _- . (39)

The superscript • denotes the property at the nozzle throat. According to Tsien's

derivation, the linearized quasi-one-dimensional equations can be manipulated to

the following form under the isentropic condition,

z(1 "d2p ( it3 ) dP-it_(2-+-i-fl-_)-z)-_z 2 2 I+_i Z-_z _2(9'+I) P=0
(40)

dP

(7 + 1)(1 - Z)-d_-z - (9' - 1 + il3)P + (2 + il3)U = 0 (41)

where

pl___= P(z) e'_',

7P (42)

= U(z)e  

and _ are the velocity and pressure of the base flow,/3 is the normalized frequency

which is defined as/3 - w(1 - z)/(_* - _), and T is the non-dimensionalized time

which is defined as T = _°t/x*. The independent variable z can be expressed

in different forms due to the linearity between the base flow velocity _ and axial

location x, and we have

139



S.-T. Yu

X

X*

= - (43)
C*

(7 + 1)M 2

2 + (7- 1)M 2

With Eqn. (43), it is clear that P and U are functions of the Mach number (M)

with prescribed frequency (/3). Equation (40) is a hypergeometric equation 14 that

can be solved by a power series expansion. The converged solution does not exist

in the supersonic region because the Mach number is greater than unity. U(z) can

be easily solved with P(z) known as shown in Eqn. (41). Finally, the acoustic

admittance function defined as A(z) = U(z)/P(z) can be obtained as a function of

the Mach number.

In what follows, the procedure of the CFD calculation to compare with Tsien's

solution is illustrated. First, the base flow field is obtained by solving the quasi-

one-dimensional equations, Eqns. (36) and (37), using the RK4-CD2 method with

the nozzle area ratio prescribed by Eqns. (38) and (39). The results are checked

by the area Mach number relation 15 and the solution is accurate up to five decimal

digits. The perturbation at the inlet is obtained by specifying sinusoidal pressure

fluctuations in terms of magnitude and frequency. With the prescribed pressure

and isentropic correlation, the temperature fluctuation is also determined. Numer-

ically, these boundary conditions are enforced by defining a vector k = k(Q) at the

upstream boundary, such as

(!)k = , (44)

where _1 and _2 are the specified values of p and T. To proceed, Equation (44) is

linearized to become a function of AQ, such as

Ok

k_+l = k" + _--_AQ, (45)

where k n+l is equal to the specified pressure and temperature at the time step

n + 1 and Ok/OQ is a 3 x 3 matrix. In order to close the system, the null entry

in the vector k may be filled by the out-running characteristic relation deduced

from the flow equations. Numerically, the similarity transformation is applied to

the discretized flow equations (see Eqn. (4)), and we get

i

LM-I(Qi _ Qn) = LM-XAt E aikR_-l'
k:a (46)

i=I,...,N
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where i = 1,---, N represents the N-step RK method. Here_ M -1 is the eigenvector

matrix of Jacobian matrix A = 0E/0Q, and L is a selection matrix with zeros and

ones on the diagonal in such a fashion that the proper outrunning characteristics

are selected. By combining the imposed conditions, Eqn. (45), with the outrunning

characteristic relations, Eqn.(46), we form the complete equation at the boundary

point as,

i

= LM-_At E aikRk-I + k"+_ - k",

i= 1,...,N

For the supersonic out-flow condition, Eqn. (46) is used with the selection matrix L

equal to an identity matrix. In both cases, the out-running characteristic equations

are solved with one-sided difference as shown in Eqn. (14). In other words, the

characteristic boundary conditions are always discretized by an upwinding scheme

which is physically sound and the numerical stability is enhanced. These boundary

conditions are applied at each of the Runge-Kutta stages.

The acoustic admittance is a complex number and can be written as A = IAle i°.

In the present paper, a small pressure perturbation of 1.1% (p' = 0.011/_) is imposed

at the nozzle inlet. The length of the converging part of the nozzle is 0.9 L* (see

Fig. 4) and the inlet Mach number is about 0.09. The frequency of the perturbation

is set at _ = 6, which corresponds to about 2000 Hz.

Figure 5 shows the comparisons between the CFD results of the RK4-CD6 method

and the theoretical solution of the acoustic admittance in terms of the magnitude

IAI and the phase angle/9 in the subsonic region of the nozzle. Both the magnitude

and the phase angle of the acoustic admittance decrease as the flow speeds up. As

shown in the figure, perfect agreement is obtained for the comparison of IAI, while

the predicted phase angle is slightly off due to the resolution of the numerical grid

for the phase angle. In this case, the harmonic content of the solution is limited to

one frequency with a wave length comparable to the computational domain which

is resolved by 61 grid nodes. Therefore, all numerical schemes of concern provide

accurate solutions. The numerical errors of IAI and /9 are tabulated in Table 2.

There is slight advantage in using the higher-order schemes for the prediction of

IAI; however, no obvious advantage of using the higher-order scheme for the phase

angle calculation is observed.

2.4.2 Shocked Sound Waves

The second case is the propagation of shocked sound waves in a tube with a

periodic boundary condition: The governing equations are the same as in the first

case, namely, Eqns. (36) and (37), with cross section area (a) equal to a constant.

This case is interesting for its complex harmonic content compared to the first

case. In addition, the capability of the high-order compact difference schemes for
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shock capturing can also be studied. At time equal to zero, a sinusoidal pressure

distribution is given. Because of the periodic boundary condition, only one cycle

resolved by 61 grid nodes is imposed in the computational domain. According to

the isentropic condition, the distributions of temperature, density, and speed of

sound are also determined. The velocity profile is determined by the simple wave

correlation 16, such as

P(_) dp-
._ p(x'_(x)' (48)

7-1

where the average flow properties are denoted by a bar. With the simple wave

correlation, the wave forms of all flow properties are in phase and the initial con-

dition of the present CFD computation matches the theoretical analysis provided

by Morse and Ingard s. It is interesting to note that the simple wave correlation is

an extension of a linear, plane, acoustic wave. For a variation of pressure less than

5%, the plane wave relations could be adopted, such as

T(x)='(I+7-1P'_ ))-_

f(x)_

%

u(x) , ,f(x)
= C(X) _ ,

(49)

where f(x) is the prescribed pressure fluctuation. As shown in Eqns. (48) and (49),

the wave speeds u + c, u - c and u vary as a result of the flow property distribution.

The distortion of the wave form is a cumulative effect resulting from the wave speed

distribution. For simple waves, i.e., all flow properties are in phase, the wave crest

will quickly overtake the trough and form a shock.

Figure 6 shows the time history of the pressure fluctuation at one end of the

computational domain for various finite difference schemes. According to Morse and

Ingard, the first shock appears after about two cycles for the case of a 10% pressure

perturbation (f/p = 0.1) s. All schemes of concern predict the wave steepening rate

correctly. After the wave shocked, the flow evolution is no longer isentropic and the

kinetic energy is gradually converted to thermal energy due to the existence of the

shock wave. As a result, the strength of the shock wave diminishes as time passes.

The shock front is a combination of many wave modes travelling at the same

speed. The dispersion error introduced by the finite difference schemes will cause

the high-wave-number waves to travel with erroneous speeds. As shown in Fig. 6,

the methods of RK4-CD6 and RK4-CD4 with a small amount of the sixth-order

artificial damping (77 = 0.02) crisply resolve the shock except for the over-shoots.
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These over-shoots are caused by the Gibbs phenomenon arid can be fixed only by

TVD type shock-capturing schemes. Almost no difference can be observed between

the results of the CD4 and CD6 methods. On the other hand, the method of RK4-

CD6 without background filtering shows that significant high-wave-number waves

lag behind the shock front because the compact difference scheme introduces no

dissipative but high dispersive effects on the highest wave number waves. As shown

in the figure, these oscillations eventually contaminate the whole solution. For the

conventional RK4-CD2 method, results show significant oscillations of moderate

wave numbers behind the shock front because of dispersion errors.

Figure 7 shows the normalized power spectrums of the pressure profiles after

about 17 cycles calculated by different methods. The analytical solution is plotted

as the solid line. The power of each wave mode is roughly inversely proportional

to the square of the wave number (o¢ l/n2). Since 61 grid nodes are used, only

30 Fourier modes are resolved for the power spectrum (the other 30 modes are the

complex conjugates). Clearly, the method of RK4-CD2 has significant errors in low

wave modes. On the other hand, the methods of I:tK4-CD4 and RK4-CD6 compare

well with the analytical solution.

2.4.3 Vortex Propagation in an Uniform Flow

A Lamb vortex propagated in an uniform flow is chosen as a two-dimensional

numerical example. The vortex can be characterized by the circulatiou F and the

core radius a. The azimuthal velocity Uo at a distance r from the vortex center is

given as,

F r

uo = "27r + a2' (50)

The flow near the vortex center is a rigid-body rotation (uo o¢ r). The flow far

outside the core is irrotational (uo cx 1/r) with uo decreasing as r increases. Eqn.

(50) is a continuous function to connect the two extremes. With the prescribed

velocity field, the pressure and density distributions of the vortex can be determined

by the momentum and the energy equations,

ap .g (51)

-y p
+ -_ = ho, (52)

7-1p

where ho is the total enthalpy and is set to be a constant such as ho - 7P/(7 - 1)_

with the free stream condition denoted by a bar. To proceed, substitute Eqns. (50)

and (52) into Eqn. (51) and integrate the equation over r. As a result, the pressure

distribution is obtained. Consequently, the density distribution and the whole flow

field is determined. The solutions of this stationary vortex can be superimposed

to any uniform flow with arbitrary speed. Physically, this process may be inter-

preted as a stationary vortex being observed from a moving coordinate system with

constant velocity. Thus, the vortex in an uniform flow can be constructed as,
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(53)
V ---- _ "i- V',

where the velocities of the backgrour_d flow are denoted by a bar and the superscript

' denotes the vortex velocities specified by Eqn. (50). The pressure and density

distribution of the moving vortex is the same as that of the stationary vortex and

may be obtained from the solutions of Eqns. (51) and (52).

The boundary condition of the present case is an extension of the characteristic

type treatment discussed in Case 1. Essentially, only one-dimensional character-

istics (derived from two-dimensional flow equations) normal to the computational

boundary are considered. For the purposes of this discussion, the subsonic out-flow

condition is considered. The coupled equations of three out-running characteris-

tics and one specified boundary condition, similar to that in Eqn. (47), should be

solved. For steady state calculations, a back pressure (Pb) is specified to regulate

the flow rate, such as

(0)0 (54)
k= 0

Pb

Similarly, the dimension of vectors Q and R is four and the matrix M -I is a 4 x 4

eigenvector matrix for the flux vector normal to the computational boundary.

For a non-reflective boundary condition, Giles' formulation I7 instead of the back

pressure is used to fill the entry for the specified boundary condition, such as

(cl)0c4 0 c2

o-7+ c3
C4

=0 (55)

where y is in the direction parallel to the computational boundary. The variables

ci, i - 1,..-, 4 are the characteristic variables and can be obtained by the similarity

transformation from the non-conservative form equations as illustrated by Giles. In

our case, the characteristic variables are derived from the conservative-form equa-

tions using the same eigenvector matrix M -1 as in the aforementioned discussion.

Giles' non-reflective formulation, Eqn. (55), is relatively simple to used with an

existing one-dimensional characteristic boundary condition. Nonetheless, according

to Giles' analysis, some two-dimensional effect is considered in the equation. Nu-

merically, Eqn. (55) may be discretized according to the finite difference scheme

of the interior nodes and combined with the discretized out-running characteristic

equations (the two-dimensional version of Eqn. (46)) to form the complete subsonic

out-flow boundary condition. It is interesting to note, however, according to Huff's

study 18 and our experience, that stretching the numerical grid nodes downstream

to dampen the outgoing unsteady waves is just as effective.
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For the in-flow conditions, the characteristic-type treatmeht combined with Giles'

equation (different from Eqn. (55)) may be adopted. For the present calculations,

however, the upstream condition is relatively insensitive to various forms of non-

reflective treatment as long as the proper out-running characteristic equation is

selected and solved with the prescribed incoming conditions similar to that in Eqn.

(47). In the present case, constant total pressure and total temperature are pre-

scribed as the forcing boundary conditions upstream.

As in the one-dimensional cases, dissipative and dispersive effects of various

schemes are assessed. The prescribed ,vortex flow field contains a broad band of

frequencies due to the distribution of the azimuthal velocity. Theoretically, all wave

modes travels at the same speed to ensure the integrity of the vortex structure.

For numerical methods with dispersive error, the shape of the vortex could deform,

even break up in the later stage of the time marching procedure. In addition, the

dissipation effect of finite difference schemes can be evaluated by the conservation

of the sharp pressure dip at the center of the vortex propagated in the numerical

grid.

In the present calculations, the Mach number of the background flow is 0.4. The

grid size is 301 x 91 in the streamwise and transverse directions, respectively. Uni-

form grids are used in the axial direction and the transverse grids axe stretched near

the outside boundary. The CFL number calculated based on the background flow

is about 0.7 for all calculations. As discussed before, a small amount of background

filtering (7 = 0.02) is applied for all calculations. The core radius (a) is about 1 cm

and is resolved by about 4 grid nodes.

Figure 8 shows the vorticity and Mach number contours of the initial condition

prescribed by Eqns. (50) - (53). Figure 9 shows the contours after the eddy prop-

agates about 60 core radii downstream as simulated by various numerical schemes.

The comparison between Fig. 8 and Fig. 9 shows that the structure of the eddy is

retained by the compact difference schemes (CD4 and CD6). In contrast, the eddy

predicted by the second-order central difference is shattered due to the excessive

dispersive error.

Figure 10 shows pressure distributions of the eddy at various instances. In this

figure, the x axis represents the streamwise locations non-dimensionalized by the

core radius of the vortex and the y axis is the pressure. For both CD4 and CD6

methods, the pressure at the vortex center increases about 1% through the process.

In comparison, the results of the second-order scheme show pressure fluctuations

with an overall increase about 3 %. The pressure fluctuation predicted by the

second-order scheme is due to the deviation of the vortex path.

2.4.4 Vortex Pairing

Finally, the calculation of the single vortex is extended to the simulation of the

vortex pairing. The vortex pairing is the controlling mechanism for the growth of

the mixing layer 1°. In theory, vortex pairing occurs when the distance between

two vortices is less than a threshold value. Unfortunately, no theoretical analysis
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is available for compressible flows. In the present paper, the RK_I-CD6 method is

used to simulate the pairing process to demonstrate the resolution of the high-order

compact difference scheme.

The initial condition is specified by two identical vortices placed 5 core radii apart

in a quiescent gas. The core radius is 1 cm and circulation is 15 m2/s. At the center

of each vortex, there is a pressure deficit about 15% compared to the ambient gas.

The grid size is 201 x 201. Uniform grids are used at the center of the computational

domain to resolve the vortices. The grids are slightly stretched in all four directions

to prevent erroneous wave reflection. In addition, one-dimensional characteristic

equations combined with Giles' unsteady, subsonic, out-flow equation is solved on

the boundary as the non-reflective boundary condition.

Figure i 1 shows the contours of the vorticity magnitude at various stages of the

vortex interaction. The whole sequence is about one and a half revolutions. Finally,

a single larger vortex emerges as the result of the vortex pairing interaction. Figure

12 shows the corresponding Mach number contours for the same flow.

3. Concluding Remarks

In this work, the quasi-one-dimensional and two-dimensional Euler solvers us-

ing various combinations of the Runge Kutta methods and the compact difference

schemes were developed for numerical simulations of unsteady flows. The accuracy

of the finite difference schemes is assessed by Fourier analysis and numerical exam-

ples in terms of numerical dissipation and dispersion. The dispersive characteristic

is improved by high-order compact difference schemes compared to the second-order

central difference. The increase of the order of time stepping scheme, on the other

hand, enlarges the CFL limit for stable computations. In particular, significant im-

provement of the dispersive effect is obtained by adopting the fourth-order compact

scheme (6 to 8 grid nodes to resolve a wave) instead of the convention_ second-order

central difference-(12 to 16 grid nodes for one wave). The use of the sixth-order

compact scheme (5 to 8 grid nodes for one wave), however, gains little improvement

compared with the fourth-order scheme. It was also found that the compact dif-

ference schemes have no dissipative but high dispersive effects to the highest-wave-

number waves resolved by a given numerical grid. Consequently, a small amount of

background filtering is necessary to dissipate the high-wave-number waves and, at

the same time, keep the low-wave-number solution intact. Other issues such as the

order of accuracy of the Runge-Kutta schemes for nonlinear equations are analyzed.

Specifically, the criteria for the 3 and 4-step methods to be third and fourth-order

accurate are derived. The accuracy of the compact difference schemes for the steady
state solution is also addressed.

In general, simulation of unsteady flow provides an overwhelming amount of in-

formation. It is our experience that the initial and boundary conditions must be

carefully set up to obtain interpretable and physically meaningful solutions. For

practical purposes, Giles' non-reflective equations combined with one-dimensional

characteristic equations and their implementation to the present numerical scheme
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were illustrated in detail. In addition, the initial conditions of the simple wave,

plane acoustic wave, and the Lamb vortex were also provided. Finally, as illus-

trated in the numerical examples, for flows of simple harmonic content, e.g., one

frequency in Case 1, the conventional second-order central difference scheme is ad-

equate provided enough grid nodes are used to resolve the very wave mode. On

the other hand, for flows of complex harmonic content, the use of the Runge-Kutta

method combined high-order compact difference schemes shows crisp resolution of

unsteady flows.
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Table 1. The Accuracy of tile 3-Step Runge-Kutta Methods.

At Expansion
0 R

1 R

2 I RR'
¢}

(R 2R"3 + RR '_)

3-step R-K methods
R

[Ot110_32 _- a33(a21 -_-a22)]RR'

l 2 a22)2a33]R2R ,,_[Etlla32 "4-(a21 "4-

-_-all Et22 a33 RR '2

Table 2. The Relative Error of the Acoustic Admittance Calculation (%).

Numerical Schemes Error of ]A] Error of 0

RK4-CD6 0.45 3.6

RK4-CD4 0.52 3.3

RK4-CD2 1.65 4.I
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Fig. 1 Dissipation and dispersion characteristics of the RK3 time-stepping combined with

various spatial discretization schemes.
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Fig. $ Vorticity and Mach number contours of an analytical Lamb vortex.
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Fig. 9 Vorticity and Mach number contours of the lamb vortex after travelling about 60 core

diameters predicted by various numerical schemes.

157



E
0

v

L.
0.

1.00-

0.98-

0.96-

0.94 -

0.92 I-

0.90 -

0.88
0.86 I

0

f f

I I I

20 40 60
core rodii

G. RK4-CD6

f

I

8O

E
0

P

Q.

1.00.

0.98 .

0.96

0.941 '
0.92]

0.90

0.88
0.861i

0 20 40 60
core rodii

b. RK4-CD4

f

I

8O

E
0

v

In

0,,.

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86 " I

0

i

V

I ' i., , I

20 40 60 80

core rodii

c. RK4-CD2

Fig. 10 Vortex pressure profiles at the center line at various instances predicted by different
numerical schem_-_

158



F
d

Fig. I[ The vorticitymagnitude contours for the vortex pairing.

159



i | !

e

w

(
I

/
@

Fig. II The vor_icity magnitude contours for the vortex pairing.

160



\

\

6_
6

/

\

\
C

\

.///
\

\
d

\

/

Fig. / 2. The Math number contours for the vortex pairing.

161





Center for Modeling of T_rbulence and Transitio_

Research Briefs -1991

Appendix A

Organization- 1991

Position Chart

-_o;i

LHe:s-ea_cn_Acao.

ORI31NAL P.O_GE IS

OF POOR QUALITY



Center for Modeling of Turbulence and Transition

Research Briefs -1991

ICOMP Director Dr. Louis A. Povinelli

Deputy Chief

Internal Fluid Mechanics Division

NASA Lewis Research Center

Coordinator Dr. Meng-Sing Liou

Senior Scientist

Internal Fluid Mechanics Division

NASA Lewis Research Center

CMOTT Technical Leader Dr. Tsan-Hsing Shih

Senior Research Associate

ICOMP, NASA Lewis Research Center

Advisors Dr. Marvin E. Goldstein

Chief Scientist

NASA Lewis Research Center

Professor John L. Lumley

Sibley School of Mechanical and

Aerospace Engineering

Cornell University

Professor Eli Reshotko

Department of Mechanical and

Aerospace Engineering

Case Western Reserve University

164



Current Member

Names/Term

Duncan, Beverly

7/1991 - present

Hsu, Andrew T.

5/1990 - present

Liou, Meng-Sing
5/1990- present

Liou, William W.
11/1990 - present

Rubinstein, Robert

7/1991 - present

Shabbir, Aamir

5/1990 - present

Shih, Tsan-Hsing
5/1990- present

Steffen, Christopher J. Jr.
10/1990 - present

Van der Vegt, Jacobus J.

10/1991 - present

Yang, Zhigang
7/1990- present

Yu, Sheng-Tao
3/1991 - present

Zhu, Jiang
4/1992- present

Listing

Affiliation

Sverdrup Tech., Inc.

Sverdrup Tech., Inc.

NASA LeRc

ICOMP

Sverdrup Tech., Inc.

ICOMP

ICOMP

NASA LeRc

ICOMP

ICOMP

Sverdrup Tech., Inc.

ICOMP

Research Areas

Multiple-Scale Turbulence
Models

PDF Turbulence Modeling,
DNS

CFD Algorithms,
High-Speed Flow

Compressible Flow

Modeling, Weakly
Nonlinear Wave Models

Analytical Theories of
Turbulence

Buoyancy Effects on

Turbulence, Turbulence

Modeling

Turbulence Modeling

Upwind Algorithms
Incompressible Flow

Two-Equation
Turbulence Models

DNS Compressible Flows
High Order Shock

Capturing Schemes

Modeling of Bypass
Transition

Modeling of Chemical

Reacting Flows, DNS

Application of Turbulence

Models in Complex Flows

165





Center for Modeling of Turbulence and Transition

Research Briefs -1991

Appendix B

CMOTT Biweekly Seminars / Technical Meetings

The purpose of these seminars is to exchange ideas and opinions on th_ latest

developments and current state of turbulence and transition research. The speakers

are invited from within and without of the NASA LeRC, including foreign speakers.

The seminars were intended not noly to keep the members informed of the latest

development of local turbulence and transition modeling research but also to increase

interactions between group members and other researchers at the NASA LeRc.

The following is the meeting schedule and the abstract of the semainars during

the reporting period.
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Date:

To:

From:

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

July 3, 1991

CMOTT Members and SVR and IFMD Staff

William W. Liou (6682)

CMOTT Biweekly Meeting

The following is a tentati_,e schedule for the CMOTT biweekly get-together from July

10, 1991 to August 28, 1991.

The presentations will be .informal and active participation is expected from the at-

tendants. Soda and snack will be served in the meetings. These meetings complement the

CMOTT Seminar Series, which are mainly formal presentations.

We would also appreciate some contributions from you. Subjects related to either the

theoretical, experimental or computational aspects of turbulence and transition modeling

are welcomed. Those who are willing to share their experience in these areas can contact

me or Dr. T.-H. Shih at 6680 for further arrangement.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

July 10, 1991

July 24, 1991

August 7, 1991

August 28, 1991

J. Lepicovsky (61-6753)

LDV Measurement of Large Structures in a Tone
Excited Turbulent Jet

C. R. Wang (5865)

Computations of Turbulence in a Shock/Turbulent

Boundary Layer Interaction Flow

A. Hsu (61-6648)

PDF Turbulence Model and Its Applications

C. Steffen (8508)
DTNS: An Accurate and Efficient Testbed for

Incompressible Flow Turbulence Modeling
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Date:

To:

From:

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

September 4, 1991

CMOTTMembersand SVRand IFMD Staff

William W. Liou (6682)

CMOTT Biweekly Meeting

The following is a tentative schedule for the CMOTT biweekly get-together from

September 11_ 1991 to October 23_ 1991 .

The presentations will be informal and active participation is expected from the at-

tendants. Soda and snack will be served in the meetings. These meetings complement the

CMOTT Seminar Series, which are mainly formal presentations.

We would ..dso appreciate some contributions from you. Subjects related to either the

theoretical, experimental or computational aspects of turbulence and transition modeling

are welcomed. Those who are willing to share their experience in these areas can contact

me or Dr. T.-H. Shih at 6680 for further arrangement.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

Sept. 11, 1991

Sept. 25, 1991

October 9, 1991

T. Bui (5639)

Implementation of the Chlen Low-Re k-e Models into the

Proteus Code

K. Ahn (5965)

A 2-D Oscillating Flow Analysis Using Quasl-steady

Turbulence Model

J. Schwab (8446)
Variable-density Turbulence Modeling for Turbomachinery

October 23, 1991 M. Mawid (5965)

Multiphase Turbulent Combustion

169



Date:

To:

From:

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

November 4, 1991

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following is a tentative schedule for the CMOTT biweekly get-together from

November 6, 1991 to December 18, 1991.

This will be the last session of the CMOTT group-meetings/informal- seminars this

year but the series will resume in mid-Janua.ry 1992. Thank you for your patience and

participation through out the year. The group-meetings/informal-seminars of CMOTT

are meant not only to serve CMOTT members but also to provide an informal forum for

those who are involved in transition/turbulence predictions. I thank all the speakers and

participants who have made these objectives "realizable". Now, we are planing for 1992.

If you have any suggestions or like to give a talk or two in the coming year, please call me

or Dr. T. H. Shih at 3-6680. In the mean time, don't forget to mark your calendar for the

following talks !

HA PP Y HOLIDA Y5 .I.1.1

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

Nov. 6, 1991

Nov 20, 1991

Dec. 4, 1991

Dec. 18, 1991

W. Liou (3-6082)

Weakly Nonlinear Models for Turbulent Free Shear Flows (2)

- A Self-Contalned Energy Transfer Model

D. Ashpis (3-8317)

DNS of Disturbances in Boundary Layer Flow

B. Rubinstein (61-6612)

Analytical Theory of Turbulence and Turbulence Modeling:
TSDIA and RNG

B. Duncan (61-2998)

A New Three-Equation Model for Turbulence
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Date:

To:

From."

Subject:

CENTER FOR MODELING OF
TURBULENCE AND TRANSITION

January 30, 1992

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following is a tentative program for the CMOTT biweekly get-together/seminar from

February 5, 1992 to March 18, 1992. Ybu are welcomed to join us.

Thanks to the your suggestions, we have made a few changes from last year's format. First,

we have scheduled the CMOTT Seminar Series, which are mainly formal presentations, into

the biweekly time frame of the CMOTT group-meeting/informal-talks. Also, the abstract

of each presentati.on, formal or informal, will be distributed about one week prior to its

scheduled date. Again, if you are interested in giving a presentation, please contact us.

The meeting will run from 1:30-2:15 PM in Room 145, Sverdrup Building, unless otherwise

noted.

(1) Feb. 5, 1992

(2) Feb. 19, 1992

(3) March 4, 1992

(4) March 18, 1992

D. Davis

Weakly Nonlinear Vortex/Wave Interactions in

Incompressible Cross-flow Boundary Layers in Transition

Z. Yang

A Modeling of Bypass Transition

K. Zaman

Effect of "Delta-Tabs" on the Evolution of Axisymmetric

Jets

Professor R. M. C. So, Arizona State University

Near Wall Heat Transfer Modeling
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Date:

To:

From:

Subject:

CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

March 26, 1992

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following is a tentative program for the CMOTT biweekly get-together/seminar from

April 1, 1992 to May 13, 1992. You are welcomed to join us. Also, if you are interested

in giving a presentation, please let us know.

The meeting will run from 1:30-2:15 PM in Room 228, Sverdrup Building, unless otherwise

noted.

(5) April 1, 1992

(6) April 15, 1992

(7) April 29, 1992

(8) May13, 1992

J. Van der Vegt

The Development of an ENO-Osher Scheme for Direct

Simulation of Compressible Flows

J. Goodrich

Unsteady TimeAsymptotic State: Incompressible Results,

New Directions for Algorithms

T.-H. Shih

Kolmogorov Behavior of Near-Wall Turbulence and

Its Application in Turbulence Modeling

Z. "fang

A Modeling of Bypass Transition
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CENTER FOR MODELING OF

TURBULENCE AND TRANSITION

Date:

To:

From:

Subject:

June 1, 1992

CMOTT Members and SVR and IFMD Staff

William W. Liou (3-6682)

CMOTT Biweekly Meeting

The following isa tentative program for tile CMOTT biweckly gct-together/$cminar from

June 10, 1992 to July 22, 1992. You are welcomed to join us.

The talks will be informal and active participation will be expected from the audience.

Also, if you are interested in giving a presentation about thc progress or some results of

your own work on turbulence or transition, please let us know.

Tile meeting will run from 1:30-2:15 PM ill Room 228, Svcrdrup Building, unless otherwise

noted.

(9) June 10, 1992 J. Zhu

FinRe Volume Computations in Incompressible Flows

with Complex Geometries

(10) June 24, 1992 J. Lee

RPLUS Code and Standard k- e Models and Applications

(11) July 8, I992 R. Mankbadi

Unsteady Turbulent Flows

(12) July 22, 1992 D. Rigby

The Effect of Spanwise Variations in Momentum on

Leading Edge Heat Transfer
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Weakly Nonlinear Vortex/Wave Interactions in
Incompressible Crossflow Boundary Layers in

Transition

by

Dominic Davis

ICOMP

Wed., 5 February, 1992
1:30-2:15 PM

Room 145, SVR Building

ABSTRACT

The instability of an incompressible three-dimensional boundary layer
is considered theoretically and computationally in the context of vor-
tex/wave interactions.Specifically the work centres on two low-amplitude,
lower-branch Tollmien-Schlichting (TS) waves which mutually interact
to induce a weak longitudinal vortex flow;the vortex motion,in turn,gives
rise to significant wave-modulation via wall-shear forcing.The character-
istic Reynolds number is taken as a large parameter and,as a conse-
quence,the TS waves and the vortex are governed primarily by triple-
deck theory.The nonlinear interaction is captured by a viscous partial-
differential system for the vortex coupled with a pair of amplitude equa-
tions for the wave pressures. Computations were performed for relatively
small crossflow values.Three distinct possibilities were found to emerge
for the nonlinear behaviour of the flow solution downstream - an alge-
braic finite-dlstance singularity, far- downstream decay or repeated oscil-
lations - depending on the various parameter values,the input amplitudes
and the wave angles.
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A k-e Model for Near Wall Turbulence and
its Application in Turbulent Boundary Layer

with/without Pressure Gradient

by

Z. Yang

IC()MP

Wed., 19 February, 1992
1:30-2:15 PM

Room 145, SVR Building

ABSTRACT

A k- _ model is proposed for turbulent wall bounded flows. In this
model, turbulent velocity scale and turbulent time scale are used to
define the eddy viscosity. The time scale used is bounded from below
by the Kolmogorov time scale. The dissipation equation is reformulated
using this time scale, removing the singularity of the high Reynolds
number k- e equation at the wall and rendering the introduction of
the pseudo-dissipation unnecessary. The damping function used in the

eddy viscosity is chosen to be a function of z_ = _ instead of y+.
Thus, the model could be used for flows with separation. The model
constants used are the same as the model constants in the commonly
used high turbulent Reynolds standard k-( model. Thus, the proposed
model would reduce to the standard k- c model when it is far away
from the wall. Boundary layer flows at zero pressure gradient, favorable
pressure gradient, adverse pressure gradient and increasingly adverse
pressure gradient are calculated respectively. The comparisons of model
predictions and the available experimental data are found to be good.
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Effect of Tabs on the Evolution of Axisymmetric Jets

by

Khairul Zaman

IFMD

Wed., 4 March, 1992
1:30-2:15 PM

Room 145, SVR Building

ABSTRACT

Vortex generators, in the form of small tabs at the nozzle exit, can have
a profound influence on the evolution of an axlsymmetric jet. Using
tabs of certain shapes, the jet cross section can be distorted almost

arbitrarily. Such distortion is accompanied by elimination of screech
noise from supersonic jets and a significant increase in jet mixing. Key
results obtained so far, covering a jet Mach number range of 0.3 and
1.8, win be summarized in this presentation. Observations will be made
on the mechanisms of the effect including the likely vorticlty dynamics
in the flow.
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Near-Wall Modeling of Turbulent Heat Transfer

by

Professor Ronald M. C. So

Mechanical and Aerospace Engineering

Arizona State University

Wed., 18 March, 1992
1:30-2:30 PM

Room"ll9, Building 5

ABSTRACT

A near-wall two-equation model for turbulent heat fluxes is derived from
the temperature variance and its dlsslpation-rate equations and the as-
sumption of gradient transport. The near-wall asymptotics of each term
in the exact equations are examined and used to derive near-wall cor-

rection functions that render the modeled equations consistent with
these behavior. Thus modeled, the equations are used to calculate
fully-developed pipe and channel flows with hear transfer. It is found
that the proposed two-equation model yields asymptotically correct near-
wall behavior for the normal heat flux, the temperature variance and its
near-wall budget and correct limiting wall values for these properties
compared to direct simulation data and measurements obtained under

different wall boundary conditions.

CONTACT: T.-H. Shih, PABX 3-5698
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The Development of an ENO-Osher Scheme for
Direct Simulation of Compressible Flows

by

Jaap Van der Vegt

ICOMP

Wed., April 1, 1992
1:30-.2:30 PM

Room 228, SVR Building

ABSTRACT

Direct simulation of turbulence and transition in compressible wall

bounded flows presents an alternative to investigate important physical
phenomena which are difficult to measure or study otherwise. It also
provides data useful for turbulence modeling. AJ new program is be-
ing developed which solves the three-dimensional compressible Navier-
Stokes equations using a higher order, fully implicit and time accurate
ENO scheme together with Osher flux splitting. In this presentation an
overview will be given of the numerical scheme and several test cases,
both for supersonic and subsonic flow, will be presented and further

improvements will be discussed.
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Unsteady Time Asymptotic States: Incompressible Results
and New Directions for Algorithms

by
John Goodrich

IFMD

Wed., April 15, 1992
1:30-2:15 PM

Room 228, SVR Building

ABSTRACT

Unsteady time asymptotic flow states for high Reynolds number viscous incom-
pressible flow problems are presented. Discrete frequency flows are shown for
the square driven cavity, with periodic cases for Re = 9000 and Re = 9600, and
with aperiodic cases for Re = 9700 and Re = 10000. The algorithm for these cal-
culations is based on the fourth order PDE for incompressible fluid flow which
uses the streamfunction as the only dependent variable, it is second order ac-
curate in space and time, and it has a stability constraint of CFL < ]. The
algorithm is extremely robust with respect to Reynolds number.

The direct numerical simulation of transition and turbulence requires nu-
merical methods to be more than second order accurate in order to accurately
represent the relevant scales of the physical processes. Recently developed
finite difference algorithms are presented for unsteady convection equations,
including the advection and inviscid Burgers equation in one space dimension,
and the wave equation treated as a system, with remarks on diffusion equa-
tions and extension to higher space dimensions. The new algorithms that will
be discussed all use local stencils, they range from third to seventh order in
accuracy, they all have the same order of accuracy in both space and time, and
they are all one step explicit methods (except for diffusion equations). Since all
of the algorithms use a small local _encil, the number of degrees of freedom of
known data required for higher order accuracy is obtained by higher information
density than just the solution data. The use of a two point stencil (for some
of the methods) allows for arbitrary grid spacing, though a convective stability
constraint must be observed at each grid point. The use of local data for an
explicit algorithm with high order accuracy avoids the requirement of using a
global solution method such as compact differencing or spline based algorithms.
There will be computational results for all of the algorithms that are presented.
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Kolmogorov Behavior of Near-Wall Turbulence
and Its Application in Turbulence Modeling

by

Tsan-Hsing Shih

ICOMP

Wed., April 29, 1992
1:30-2:15 PM

Room 228, SVR Building

ABSTRACT

The near-wall behavior of turbulence is re-examined in a way different from
that proposed by Hanjalic and Launderlll and followersl21,[31,[*],is]. It is shown
that at a certain distance from the wall, all energetic large eddies will reduce
to Kolmogorov eddies (the smallest eddies in turbulence). All the important
wall parameters, such as friction velocity, viscous length scale, and mean strain
rate at the wall, are characterized by Kolmogorov microscales. According to this
Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such
as turbulent kinetic energy, dissipation rate, etc. at the location where the
large eddies become "Kolmogorm/' eddies, can be estimated by using both di-
rect numerical simulation (DNS) data and asymptotic analysis of near-wall
turbulence. This information will provide useful boundary conditions for the
turbulent transport equations. As an example, the concept is incorporated in

the standard k-e model which is then applied to channel and boundary layer
flows. Using appropriate boundary conditions (based on Kolmogorov behavior
of near-wall turbulence), there is no need for any wall-modification to the k-
e equations (including model constants). Results compare very well with the
DNS and experimental data.
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A Modeling of Bypass Transition

by

Z. Yang

ICOMP

Wed., May 13, 1992
1:30-2:15 PM

Room 228, SVR Building

ABSTRACT

A model for the calculation of bypass transitional boundary layers due to the
freestream turbulence is proposed. The model combines a near wall k-_ model
proposed for the fully developed turbulent flows with the intermittency of the
transitional boundary layers. The intermittency factor is assumed to be a func-
tion of both the free stream turbulence and the shape factor of the boundary

layer. Transitional boundary layers over a fiat plate with different freestream
turbulence level are calculated using the proposed model. It is found that the
model calculations agree well with the experimental data and give a better pre-
diction compared with other low Reynolds number k- e models, which do not
incorporate the intermittency effect.
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Finite-Volume Computations of Incompressible
Flows with Complex Geometries

by

J. Zhu

ICOMP

Wed., June 10, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

A brief review is given of finite-volume procedures developed at the
Institute for Hydromechanics, University of Karlsruhe, for calculating
incompressible elliptic flows with complex boundaries. The procedures
include: numerical grid generation, h|gher-order bounded convection
schemes, zonal solution, simulation of two-phase flows, and near-wall

turbulence modelling. Various appl_catlon examples wtll be given.
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Development of the RPLUS code with
Standard model and Their Applications

by

Jinho Lee

Sverdrup Technology, Inc.

Wed., June 24, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

The primary goal of this research effort is to develop a CFD tool which can be used in

a variety of practical supersonic/hypersonic propulsion device development/analysis envi-

ronments. One focus of this work has been to deveJop and validate the Reactive Propulsion

code based on LU SCheme(RPLUS). This effort also includes the development of turbu-

lence models which can be used in the predictions of highly complex flow environments

inside of combustors.

This presentation will cover only a small part of a larger development effort and focus

will primarily on the analysis, implementation, and development of the turbulence model

capabilities of the RPLUS code.
Some of the issues which will be covered are; formulation of the turbulence models,

the numerical technique used to solve the turbulence model equations, and modeling of

compressibility effects. The primary numerical technique used in the R.PLUS code is

the LU-SSOR(LU scheme based on Successive Symmetric Over Relaxation) technique.

Therefore, the turbulent kinetic energy transport and dissipation transport equations are

also solved using the LU-SSOR numerical technique.
Both two and three dimensional turbulen_ model development are being developed

for the RPLUS code. However, the majority of the presentation will focus on the devel-

opment of the two dimensional k-e models for the RPLUS code. Issues regarding com-

pressible wall-function boundary conditions and compressibility effects will be addressed.

Both low and high Re,molds number forms of the k-e models are being developed. The

"standard" low Reynolds number model of Launder-Sharma _md Chien has been used in

this study. The problems of primary intere_sts are supersonic turbulent boundary-layers,

shock-wave/boundary-layer interactions, and shear-layers in two or three dimensional en-
vironments.
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Unsteady Turbulent Flows

by

Reda R. Mankbadi
NASA Lewis Research Center

Wed., July 8, 1992
1:30-2:30 PM

Room 228, SVR Building

ABSTRACT

Current research activities emphasize computation/modelling of turbu-
lent flows when basic flow is time-periodic. Wall-bounded flows and free
shear flows exhibit different features when the basic flow is unsteady;
and as such, different approaches are used to model them.

(A) In wall-bounded, oscillatory flows, two approaches are used to
model turbulence: (I) Turbulence is assumed to behave in a quasi-steady
manner, and steady-state models are directly extended to the unsteady
case. This approach fails at high frequencies of oscillations. (11) Rapid
distortion theory (RDT) is successfully adapted to aid in turbulence
modelling of highly unsteady flows (high frequencies). The eddy viscosity
hypothesis is replaced by the ratio of turbulent stresses/kinetic energy;
which is given by RDT as a function of the accumulated rate of strain.

(B) In free shear flows (naturally unsteady, or excited to be un-
steady), two approaches are investigated: (I) The large-scale (organized,
coherent) component is modelled as instability waves interacting with
each other as well as with the mean flow and the fine-scale (random,
background) turbulence. Integrated klnetlc-energy equations are then
obtained for each scale of motion. The approach is successful in pre-
dicting results in good agreements with experiments in which excitation
devices are used to control jet mixing and turbulence. (11) The other
approach adopted is Large-Eddy Simulations (LES) with application to
predicthlg the far-field noise of a supersonic jet.

CONTACT: William W. Liou, PABX 3-6682
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Biweekly Meeting Series (1992-12)

The Effect of Spanwise Variations in
Momentum on Leading Edge Heat Transfer

by

David Rigby
Sverdrup Tech. INc.

Wed., July 22, 1992
1:30-2:30 PM

Room 228, SVR Building

, ABSTRACT

A study of the effect of spanwise variation in momentum on leading

edge heat transfer is discussed. Numerical and experimental results
are presented for a circular leading edge and for a 3:1 elliptical leading
edge. Direct comparison of the two-dimensional results, that is with no
spanwise variations, to the analytical results of Frossling is very good.
The numerical calculation, using the PARC3D code, solves the three-
dimensional Navier-Stokes equations, assuming steady laminar flow on
the leading edge region. Experimentally, increases in spanwise averaged
heat transfer coefficient as high as 50% above the two-dimensional value
were observed. Numerically, the heat transfer coefficient was seen to
increase by as much as 25% percent. In general, the circular leading
edge, under the same flow conditions, produced a higher heat transfer
rate than the elliptical leading edge. As a percentage of the respective
two-dimensional values, the circular and elliptical leading edges showed
similar sensitivity to spanwise variations in momentum. By equating the
root mean square of the amplitude of the spanwise variation in momen-
tum to the turbulence intensity, a qualitative comparison between the
present work and turbulent results was possible.

CONTACT: William W. Liou, PABX 3-6682
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Appendix C

List of Member's Publications

Barton, J. M., Rubinstein, R. and Kirtley, K. R. "Nonlinear Reynolds Stress Model

for Turbulent Shear Flows, " AIAA Paper No. 91-0609, (Jan. 1991).

Barton, J. M. and Rubinstein, R., "Nonlinerar Algebraic Reynolds Stress Model for

Anisotropic Turbulent Flows, " llth U. S. National Congress of Applied Mechanics,

Tucson, AZ (May 1990).

Barton, J. M. and Rubinstein, R., "Renormalization Group Theory and Turbulence

Modeling, " 2nd International Workshop on Chaos and Turbulence, Tsukuba, Japan

(Jan. 1992).

Barton, J. M. and Rubinstein, R., "Renormalization Group Analysis of Turbulence-

Driven Secondary Fows, " llth Australian Fluid Mechanics Conference, Hobart,

Australia (Dec. 1992).

Brown, S., Leibovich, S. and Z. Yang, "On the linear instability of the Hall-

Stewartson vortex," Theoretical and Computational Fluid Dynamics, 2, 27-46,

(1990).

Duncan, B. S., Liou, W. W. and Shih, T.-H., "A Multiple-scale turbulence model

for incompressible flow," NASA TM (to appear) (1992).

Duncan, B.S., Lumley, J.L., Shih, T.H. and To, W.M., "A new model for the

turbulent dissipation" International Conference of Fluid Mechanics and Theoretical

Physics, Bejing, China (1992).

Hsu, A.T. and Liou, M., "Computational analysis of underexpanded jets in the

hypersonic regime," Journal of Propulsion and Power, 7, No. 2, (1991).

Hsu, A.T., "Progress in the development of PDF turbulence models for combus-

tion," 10th NASP Symposium, April 23-16, 1991, Monterey, California.

Hsu, A.T., "A study of hydrogen diffusion flames using PDF turbulence model,"

AIAA 91-1780, AIAA 22nd Fluid Dynamics Conference, June 24-26, 1991, Hon-

olulu, Hawaii.

Hsu, A.T. and Chen, J.Y., '% continuous mixing Model for PDF simulations and

its applications to combusting shear flows," 8th International Symposium on Tur-

bulence Shear Flows, Sept. 9-11, 1991, Munich, Germany.

Lang, N.J. and Shih, T.-H., "A critical comparison of two-equation turbulence

models," NASA TM 105237, (1991).

Liou, M. S. and Steffen, Jr., C. J., "A New Flux Splitting Scheme," NASA TM

104404 (1991).
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Liou, W. W. and Shih, T.-H., "A two-scale model for compressible turbulent flows,"

NASA TM (to appear) (1992).

Liou, W. W. and Shih, T.-H., "On the basic equations for sencond-order modeling

of compressible turbulence," NASA TM 105277 (1991).

Liou, W. W. and Morris, P. J., "Weakly nonlinear models for turbulent mixing in

a plane mixing layer," Phy. Fluids (to appear).

Liou, W. W. and Morris, P. J., "The eigenvalue specturm of the Rayleigh equation

for a plane shear layer," Int. J. Num. Fluids, (to appear).

Liou, W. W., "A new energy transfer model for turbulent free shear flow," NASA

TM (to appear) (1992).

Mansour, N N. and Shih, T.-H. and Reynolds, W. C., "The effects of rotation on

initially anisotropic homogeneous flows," Physics of fluid A, 3, 10, 2421-2425 (1991).

Michelassi, V. and Shih, T.-H., "Low Reynolds number two-equation modeling of

turbulent flows," NASA TM 104368, (1991).

Michelassi, V. and Shih, T.-H., "Elliptic flow computation by low Reynolds number

two-equation turbulence models ," NASA TM 105376, (1991).

Moin, P., Shih, T.-H., Driver, D. and Mansour, N., "Direct numerical simulation of

a three-dimensional turbulent boundary layer," Physics of Fluids A 2, 10, 1846-1853

(1990).

Rubinstein, R. and Barton, J. M., "Nonlinear Reynolds stress models and the renor-

malization group," Phys. Fluids A 2, 1472 (1990).

Rubinstein, R. and Barton, J. M., "Renormalization group analysis of anisotropic

diffusion in turbulent shear flow," Phys. Fluids A 3, 415 (1991).

Rubinstein, R. and Barton, J. M., "Renormalization group analysis of the Reynolds

stress transport equation," to appear in Physics of Fluids A, (July 1992).

Shabbir, Munich. A., "Experimental balances for the second moments for a buoy-

ant plume and their implication on turbulence modeling," Eighth Symposium on

Turbulent Shear Flows, 27-1-1 to 27-1-6 (1991).

Shabbir, A. and Shih, T.-H., "Critical comparison of second order turbulence models

in homogeneous flows," Submitted to AIAA Annual meeting in Reno, Jan. 1992.

Shih, T.-H. and Lumley, J.L., "Kolmogorov behavior of near-wall turbulence and

its application in turbulence modeling," NASA TM 105663 (1992)
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with direct numerical simulation," NASA TM 103221 (1990).
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Steffen, Jr., C. J. and Beard, L. M., "Incompressible Navier Stokes Solutions Using

the Pseudo Compressibility Technique," Proceeding of the 23rd Annual Pittsburgh

Conference on Modeling and Simulation, in print (1992).

Van der Vegt, Jaap, "ENO-Osher schems for Euler equations," submitted for pub-

lication (1992).

Van der Vegt, Jaap, "Overview of the Osher approximate Riemann solver for three-

dimensional flows," NASA TM, in print (1992).

Yang, Z. and Leibovich, S "Nonlinear dynamics near the stability margin in rotating

pipe flow," J. Fluid Mech. 233, 329-347, (1991).

Yang, Z. and Leibovich, S., "Unstable viscous wall modes in rotating pipe flow,"
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Yang, Z. and Shih, T.H., "A k - e calculation of transitional boundary layers,"

To appear in Transition and Turbulence, Springer-Verlag, 1992. Also available as

NASA TM 105604.

Yang, Z. and Shih, T.H. "A new time scale based k - e model for near wall turbu-

lence," Submitted for publication. It is also to appear as a NASA TM (1992).

Yang, Z. and Shih, T. H., "A modeling of transitional boundary layers," In prepa-
ration.

Zhu, G., Lai, M.-C and Shih, T.-H., "Second-order closure modeling of turbulent

buoyant wall plumes," NASA TM (in print) (1992).
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